• Title/Summary/Keyword: Acoustic attenuation

Search Result 239, Processing Time 0.023 seconds

Assessment of Acoustic Iterative Inverse Method for Bubble Sizing to Experimental Data

  • Choi, Bok-Kyoung;Kim, Bong-Chae;Kim, Byoung-Nam;Yoon, Suk-Wang
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.195-199
    • /
    • 2006
  • Comparative study was carried out for an acoustic iterative inverse method to estimate bubble size distributions in water. Conventional bubble sizing methods consider only sound attenuation for sizing. Choi and Yoon [IEEE, 26(1), 125-130 (2001)] reported an acoustic iterative inverse method, which extracts the sound speed component from the measured sound attenuation. It can more accurately estimate the bubble size distributions in water than do the conventional methods. The estimation results of acoustic iterative inverse method were compared with other experimental data. The experimental data show good agreement with the estimation from the acoustic iterative inverse method. This iterative technique can be utilized for bubble sizing in the ocean.

A Study on Temperature Features of Broadband Ultrasonic Attenuation (초음파 광역 감쇠의 온도 특성에 관한 연구)

  • 신정식;안중환;한승무;김형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.245-248
    • /
    • 1997
  • The distilled water is used for the ultrasonic wave propagating material in the measurements of broadband ultrasonic attenuation (BUA) that is applied in industrial and medical applications, The acoustic impedance of water is significantly changed with its temperature. Therefore, the quantitative evaluation of BUA with temperature and the ultrasonic wave propagating distance is highly needed. In this study, we evaluated the variation of attenuation with change in temperature. To measure the variation of BUA in the low frequency region at the temperatures, 27$^{\circ}C$, 29$^{\circ}C$, and 31$^{\circ}C$, we tested the Plyethylene, Teflon, MC-Nylon, Urethane specimens and analyzed the center frequency, frequency bandwidth, spectral peak amplitude. The results showed that BUA value appeared to be lower with increasing temperature. This may be due to the fact that the frequency feature of ultrasonic wave is affected by not only the specific gravity, acoustic impedence, but material crystalline, porosity, the distance of ultrasonic wave propagation in water.

  • PDF

Measurements of Acoustic Properties of Tofu and Acorn Curd as Potential Tissue-mimicking Materials

  • Li Ying;Guntur S.R.Anjaneya Reddy;Choi Min Joo;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.132-138
    • /
    • 2005
  • The purpose of this study is to measure the acoustic properties of Tofu and Acorn Curd (Dotori Muk), which are possibly used as tissue mimicking materials (TMMs). Due to its availability and low cost, Tofu was suggested as a TMM by several researchers who measured only sound speed and attenuation. The acoustic properties of Tofu and Muk including the backscattering coefficient were measured in this paper. Sound speed was measured by the time shift in a pulse echo setup. Attenuation coefficients and backscattering coefficients were measured by a broadband method using both 5 MHz and 10 MHz transducers in the frequency domain. The measured acoustic properties of both Tofu and Muk are observed to be similar to those of biological tissues such as beef liver or beef heart.

Theoretical Study of Coherent Acoustic Inverse Method for Bubble Sizing in Bubbly Water

  • Choi, Bok-Kyoung;Yoon, Suk-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.3-8
    • /
    • 1996
  • The bubble size distribution is critical information to understand sound propagation and ambient noise in the ocean. To estimate the bubble size distribution in a bubbly water, the sound attenuation has been only in the conventional acoustic bubble sizing method without considering the sound speed variation. However, the effect of the sound speed variation in bubbly water cannot be neglected because of its compressibility variation. The sound attenuation is also affected by the sound speed variation. In this paper, a coherent acoustic bubble sizing inverse technique is introduced as a new bubble sizing technique with considering sound speed variation as well as the sound attenuation. This coherent sizing method is theoretically verified with the bubble distribution functions of single-size, Gaussian, and power-law functions. Its numerical test results with the coherent acoustic bubble sizing method show good agreement with the given bubble distributions.

  • PDF

Effects of Wave Attenuation on the Acoustic Emission Amplitude Distribution of Injection-Molded Fiber/Plastic Composites (섬유/플라스틱 사출성형 복합재료의 음향방출 진폭분포에 대한 감쇠효과)

  • Choi, N.S.;Takahashi, Kiyoshi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • The attenuation of acoustic emission (AE) waves was evaluated for injection-molded short-fiber-reinforced thermoplastic composites employing simulated AE waves. Values of attenuation coefficient (${\alpha}$) decreased more with increasing fiber volume fraction ($V_f$) than that expected from a simple linear relation between ${\alpha}$ and $V_f$. The effect of wave attenuation was taken into account in a quantitative analysis of the AE peak amplitude distribution which was obtained from each zone partitioned in a specimen gage portion. The amplitude distribution compensated for the measured attenuation loss was exhibited almost similar in every zone of the specimen. Consequently, it was, shown that the AE amplitudes obtained from fiber/plastic composites were considerably affected by the attenuation.

  • PDF

Measurement of Acoustic Properties of Polyurethane by the through Transmission Method (투과법을 이용한 폴리우레탄재료의 음향특성 측정)

  • 김태식;이기석;안봉영;이진형
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • To obtain the acoustic properties of dispersive polyurethane with high attenuation, through transmission method was applied by ultrasonic. In through transmission method, the sound velocity and attenuation coefficient of specimen were obtained by using Sachse's method which can be applied to small size specimen. But there is a problem when the reference signal is selected, so the result is not precise. The more precise acoustic properties of polyurethane was obtained when two specimens with different thickness were used. To predict the acoustic properties of low frequency range, the acoustic properties extended to the low frequency range were calculated by Kramers - Kronig relation. As a result, we studied on the relation between the sound velocity and the attenuation coefficient with frequency.

  • PDF

A Study on Quantification of Damping Efficiency of Acoustic Cavities by Absorption Coefficient (흡음 계수를 이용한 연소불안정 제어용 음향공의 감쇠 정량화)

  • Cha, Jung-Phil;Song, Jae-Gang;Hong-Jip Kim;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.438-445
    • /
    • 2007
  • A Helmholtz resonator as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified by linear acoustic analysis and atmospheric acoustic tests. To compare the results of acoustic attenuation effect in accordance with uni-resonator's geometry, quantitative analyses were made in the cases of various orifice diameters and lengths. Next, in the experiments to compare the results of acoustic attenuation effect by a difference in the number of resonators, damping capacity of harmful resonant frequency was improved by the increase of the number of resonators. On the other hand, attenuation efficiency of the frequency tended rather to lower due to over damping from the point of view of absorption coefficient. As the result, tuning the suitable geometry for the resonator to the resonant frequency is required for the control using the resonator. Also, the design of resonator's geometry and the choice of its number are important to put up the optimal efficiency in consideration of restriction of its volume.

Acoustic Properties of Solid Materials: Sound Speed, Transmission Coefficient, and Attenuation

  • Roh Heui-Seol;Lee Kang Il;Jung Kyung-Il;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.525-528
    • /
    • 2002
  • The speed of sound, transmission coefficient, and attenuation are measured around the center frequency 1 and 2 MHz in solid materials such as bone, sediment, rubber, and Lucite materials. Common and different characteristics of such materials in the sound speed, transmission coefficient, and attenuation are discussed. Ambiguities in estimating such acoustic characteristics we also addressed. Ultrasonic properties of the first and second kind waves are clarified for different materials. Discussions are concentrated on classes of sound speed, broadband ultrasonic attenuation (BUA), and correlations of sound speed and BUA with apparent density. New correlations of inverse sound speed square and BUA with apparent density are suggested.

  • PDF

Development of New Methods for Position Estimation of Underground Acoustic Source Using a Passive SONAR System

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Ahn, Heung-Gu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about 100m underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

Narrowband Noise Attenuation Characteristics of In-Duct Acoustic Screens (덕트 내 음향 스크린의 협대역 소음 저감 특성)

  • 임민홍;김양한
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.733-740
    • /
    • 1998
  • 본 논문은 덕트 내에 설치된 음향 스크린의 특성을 연구하였다. 다양한 형상의 음향 스크린의 투과 손실 측정을 통하여, 음향 스크린에 의해 생긴 두 개의 비대칭 경로가 특정 주파수에서 큰 협대역 소음 저감을 발생시킴을 알 수 있었다. 그리고, 실험과 수치적 모의 실험을 바탕으로 이러한 현상을 정확하게 설명할 수 있는 해석적 모델을 개발하였다.

  • PDF