• Title/Summary/Keyword: Acoustic Sensor Systems

Search Result 109, Processing Time 0.024 seconds

Two-Dimensional Localization Problem under non-Gaussian Noise in Underwater Acoustic Sensor Networks (비가우시안 노이즈가 존재하는 수중 환경에서 2차원 위치추정)

  • Lee, DaeHee;Yang, Yeon-Mo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.418-422
    • /
    • 2013
  • This paper has considered the location estimation problem in two dimension space by using a non-linear filter under non-Gaussian noise in underwater acoustic sensor networks(UASNs). Recently, the extended Kalman filter (EKF) is widely used in location estimation. However, the EKF has a lot of problems in the non-linear system under the non-gaussian noise environment like underwater environment. In this paper, we propose the improved Two-Dimension Particle Filter (TDPF) using the re-interpretation distribution techniques based on the maximum likelihood (ML). Through the simulation, we compared and analyzed the proposed TDPF with the EKF under the non-Gaussian underwater sensor networks. Finally, we determined that the TDPF's result shows more accurate localization than EKF's result.

Study on Improvement of the Piezoelectric Properties of Acoustic Emission Sensor to be Used for Superconducting Application Systems (초전도 응용기기 안정성 진단을 위한 AE센서용 압전소자의 성능개선 연구)

  • Kim, K.J.;Kim, J.H.;Song, J.B.;Paik, J.H.;Jang, J.Y.;Ko, T.K.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.44-48
    • /
    • 2010
  • Acoustic emission (AE) signal from an HTS tape has a low signal to noise ratio, due to the large amount of noise caused by the boiling of the liquid cryogen or mechanical vibration from the cryo-cooler. In an attempt to improve the sensitivity of the AE sensor, $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt.% $Nb_2O_5$ ceramics sintered at $1200^{\circ}C$ was synthesized. In addition, the resonance ($f_r$) and anti-resonance frequencies ($f_a$) were measured using the specimens with various thicknesses (1.0, 1.5, 2.0, 2.5 and 3.0 mm). According to the test results, large AE signals with high frequencies were obtained from the AE sensor fabricated using a piezoelectric disc with a thinner thickness.

Sensor Nodes Selecting Schemes-based Distributed Target Tracking Filter for Underwater Wireless Sensor Networks (센서노드 선정기법 기반 수중 무선센서망 분산형 표적추적필터)

  • Yu, Chang Ho;Choi, Jae Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.694-701
    • /
    • 2013
  • This paper deals with the problem of accurately tracking a single target moving through UWSNs (Underwater Wireless Sensor Networks) by employing underwater acoustic sensors. This paper addresses the issues of estimating the states of the target, and improving energy efficiency by applying a Kalman filter in a distributed architecture. Each underwater wireless sensor nodes composing the UWSNs is battery-powered, so the energy conservation problem is a critical issue. This paper provides an algorithm which increases the energy efficiency of each sensor node through WuS (Waked-up/Sleeping) and VM (Valid Measurement) selecting schemes. Simulation results illustrate the performance of the distributed tracking filter.

Calibration of SAW Based Capacitive Sensor Using Lumped Component and High Precision Gap Measurement (집중 소자를 이용한 표면 탄성파 장치 기반의 용량 성 센서 보정 및 이를 이용한 초정밀 간극 측정)

  • Kim, Jae-Geun;Ko, Byung-Han;Park, Young-Pil;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • SAW device is widely used as filters, sensors, actuators in various technologies. And capacitive sensor is tremendously used to measure pressure, gap, etc. The application of SAW device as signal conditioner of capacitive sensor reduces noise level and enables high precision measurement. The response increase of SAW based capacitive sensor is produced just before the two capacitive electrode contacts by the existence of parasitic resistance of capacitive electrode. In this paper, we analyze the effects of parasitic resistance and propose the calibrating method using lumped component and execute the high precision gap measurement using calibrated system. And xx nm resolution and yy ${\mu}m$ stroke was attained.

Acoustic Sensors based Fault Diagnosis Algorithm for Large-scaled Power Machines using Neural Independent Component Analysis (신경회로망 독립성분해석을 이용한 음향센서 기반 대전력기기의 고장진단 알고리즘)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.881-888
    • /
    • 2008
  • We present a novel fault diagnosis methodology using acoustic sensor systems and neural independent component analysis for large-scaled power machines. Acoustic sensors are carried out to measure sounds generated from power machines whose signal is used to determine whether fault is occurred or not. Acoustic measurements are independently mixed and deteriorated from original source signals. We propose a demixing algorithm against such mixed signals by means of independent component analysis which is achieved based on information theory and higher-order statistics to derive learning mechanism.

A Study on PDOP due to the Position Error of Acoustic Sensors in the 3D TDOA Positioning System (3차원 TDOA 위치 측정 시스템에서 음향 센서의 위치 오차에 따른 PDOP에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.199-205
    • /
    • 2015
  • Indoor positioning technology has been developed very actively for the smart phone handheld by most users. Especially, many TDOA positioning systems using acoustic signal have been studied, and it estimates the smart phone position by measuring the distance between the smart phone speaker and the microphones which is installed to receive the acoustic signal from the smart phone, and by calculating the hyperbolic equations. But there are always errors for the distance measurements, and furthermore the microphone installation error produces huge position estimation error. In this paper, the position estimation error due to the position error of acoustic sensor in the 3 dimensional TDOA positioning system, is analyzed by PDOP simulation and experiment.

SIR analysis for Enhancing Image Quality in Underwater Acoustic Lens System (수중음향렌즈 카메라에서 영상 품질 향상을 위한 SIR 분석)

  • Lee, Jieun;Im, Sungbin;Shim, Taebo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.181-190
    • /
    • 2014
  • The underwater acoustic lens system is one of the systems getting high-resolution images on the seafloor by the beam forming method using acoustic lens. The beam forming using acoustic lenses reduces complexity and driving power. When receiving an incoming beam with the acoustic lens array, beam pattern analysis and arrangement problem of the array sensor must be addressed. Introducing SIR (Signal to Interference Ratio), the relationship among sensor interval, beam pattern and image quality would be analyzed. Generally if the sensor interval getting wider, the less effect of the side lobes makes SIR high. If the amplitude of a side lobe is high, SIR is generally getting low. The type of the apodization function changes the width, shape and amplitude of both main lobe and side lobes. Thus an appropriate apodization function can improve SIR. In this paper, SIR is stable at the sensor interval of 13mm with 0-10dB, which is not high relatively. By applying the Chebyshev function, the SIR becomes 80dB over the sensor interval of 37 mm or higher. The Hann and triangular functions demonstrate better SIR when the sensor interval becomes narrower.

PR-MAC Protocol based on Priority in Underwater Acoustic Sensor Networks (수중 음파 센서 네트워크에서 우선순위 기반의 PR-MAC 포로토콜)

  • Cho, Hui-Jin;NamGung, Jung-Il;Yun, Nam-Yeol;Park, Soo-Hyun;Ryuh, Young-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.258-268
    • /
    • 2011
  • Underwater acoustic sensor networks can be used disaster prevention and environmental monitoring systems in underwater environments. Because, the underwater environment is different from the ground, the long propagation delay, low transfer rates and limited bandwidth characteristics should be considered. In this, paper will propose the MAC protocol that allocates time slot into each node according to priority policy through the period of contention-free slot reservation in underwater acoustic sensor networks in order to avoid collision and minimize energy consumption waste. We perform mathematical analysis to evaluate the performance of the proposed protocol with regard to the collision probability, the energy consumption by collision, throughput and channel utilization. We compare the proposed protocol with the conventional protocol, and the performance results show that the proposed protocol outperforms the conventional protocol.

Development of Fiber-Optic AE Sensor for On-Line Monitoring System (광섬유를 이용한 상시감시 시스템용 음향방출센서의 개발)

  • Nam, Jae-Yeong;Jeong, Jae-Hyeon;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2891-2898
    • /
    • 2000
  • The objective of this paper is to develop a fiber-optic acoustic emission(AE) sensor applicable to on-line monitoring systems which is suitable for long-distance signal transmission. An AE sensor was developed by use of a fiber-optic cantilever and an extrinsic Fabry-Perot interferometer(EEPI). The efficiency of signal processing was improved by driving the high frequency AE signals into the low frequency ones. In order to verify the developed sensor, the tensile and the pencil lead fracture(PLF) tests were performed including the experiment showing the Kaiser effect. Form tests, AE signals were successfully detected in the elastic-plastic deformation range, especially higher signals at the crack propagation. The developed sensor was expected to be used for an on-line monitoring of crack propagation in mechanical system.

Conceptual design and preliminary characterization of serial array system of high-resolution MEMS accelerometers with embedded optical detection

  • Perez, Maximilian;Shkel, Andrei
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.63-82
    • /
    • 2005
  • This paper introduces a technology for robust and low maintenance cost sensor network capable to detect accelerations below a micro-g in a wide frequency bandwidth (above 1,000 Hz). Sensor networks with such performance are critical for navigation, seismology, acoustic sensing, and for the health monitoring of civil structures. The approach is based on the fabrication of an array of high sensitivity accelerometers, each utilizing Fabry-Perot cavity with wavelength-dependent reflectivity to allow embedded optical detection and serialization. The unique feature of the approach is that no local power source is required for each individual sensor. Instead one global light source is used, providing an input optical signal which propagates through an optical fiber network from sensor-to-sensor. The information from each sensor is embedded onto the transmitted light as an intrinsic wavelength division multiplexed signal. This optical "rainbow" of data is then assessed providing real-time sensing information from each sensor node in the network. This paper introduces the Fabry-Perot based accelerometer and examines its critical features, including the effects of imperfections and resolution estimates. It then presents serialization techniques for the creation of systems of arrayed sensors and examines the effects of serialization on sensor response. Finally, a fabrication process is proposed to create test structures for the critical components of the device, which are dynamically characterized.