• 제목/요약/키워드: Acoustic Radiation Power

검색결과 93건 처리시간 0.031초

흡음재 배치를 통한 닫힌 공간에서의 소음원 방사 파워 제어 (Radiation Power Control by Means of Absorptive Material Arrangement in an Enclosure)

  • 조성호;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.688-691
    • /
    • 2004
  • We have studied the possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work (1,2), the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. The possibility of total acoustic potential energy reduction by acoustic source power control is examined in an acoustically small cavity. Using acoustic energy balance equation, the relation between global noise control performance and absorptive material's arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent's distribution and impedance.

  • PDF

방사효율과 방사방향 계수에 대한 새로운 산출기법 연구 (A New Extraction Method for the Radiation Efficiency and Radiation Directional Coefficient)

  • 정우진;이종주;강명환;전재진
    • 한국소음진동공학회논문집
    • /
    • 제24권2호
    • /
    • pp.93-101
    • /
    • 2014
  • Underwater radiated noise is the key in acoustic stealth performance of modern naval ships. The underwater radiated noise predicted by the hull vibration with radiation efficiency cannot always give the information of radiation pattern which is essential to analyze of detection probability by enemy and to improve the operational performance of the naval ship. The radiation pattern of underwater radiated noise is able to be obtained with radiation efficiency and radiation directional coefficient. In this paper, a new method to extract the radiation efficiency and radiation directional coefficient is suggested and proved with the simulation and experiment by using cylindrical shell of 70 cm diameter in air.

방사효율과 방사방향 계수 산출기법 연구 (A Study on the method for the extraction of the radiation efficiency and radiation direction coefficient)

  • 정우진;강명환;이종주;전재진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.738-743
    • /
    • 2013
  • Underwater radiated noise is the key in acoustic stealth performance of modern naval ships. The underwater radiated noise predicted by the hull vibration with radiation efficiency cannot give the information of radiation pattern which is essential to the analysis of detection possibility by enemy and to improve the operational performance of the naval ship. The radiation pattern of underwater radiated noise is able to be obtained with radiation efficiency and radiation direction coefficient. In this paper, a new method to extraction the radiation efficiency and radiation direction coefficient is suggested and proved with the simulation and experiment by using cylindrical shell of 70cm diameter in air.

  • PDF

난류 유동장 내 두께를 가지는 단일 에어포일의 음향파워 예측 (Prediction of acoustic power radiated from an airfoil with thickness in turbulent flow)

  • 김대환;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.353-358
    • /
    • 2013
  • Present paper deals with turbulence-airfoil interaction noise and mainly investigates the effects of airfoil thickness on the broadband noise spectrum. The acoustic power radiation from an airfoil is predicted using high-order time-domain method, which is based on the computational aeroacoustic technique solving the linear Euler equations. The homogeneous and isotropic turbulence is generated by utilizing the synthetic turbulence modeling based on random particle method. The airfoils taken into consideration are a flat-plate and a NACA0012 airfoil aligned with uniform mean flow. The effects of airfoil thickness on the radiated inflow turbulence noise are investigated by comparing acoustic power spectrum predicted for each airfoil. The comparison of acoustic power spectrum reveals that the airfoil thickness significantly contributes the high frequency noise reduction.

  • PDF

구조-음향 연성현상을 갖는 방사 방향을 가질 수 있는 방사체 설계방법 (A Design Method for Direction Selective Structural-acoustic Coupled Radiator)

  • 서희선;김양한
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.225-231
    • /
    • 2005
  • This paper presents a design method for the structural-acoustic coupled radiator that can emit sound in the desired direction. A coupled system that has a finite space and a semi-infinite space separated by two flexible walls and an opening is considered. An objective function is selected to maximize radiation power on a main axis and minimize a side lobe level. To get initial values, prediction of a pressure distribution on field points and radiation pattern of the structural-acoustic coupling system is shown at a coupled-resonant frequency. Three different optimization methods are adapted to design the coupled radiator. Pressure and intensity distribution of the designed radiator is presented.

상호간섭영향을 고려한 평면배열형 음향센서의 방사출력 예측 (Radiation power estimation for the planar array acoustic sensor considering mutual coupling effects)

  • 이종길;서인창
    • 제어로봇시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.194-199
    • /
    • 1996
  • 평면 배열형 소나 센서에서는 트랜스듀서 상호간의 간섭효과들이 음을 방사하는 각각의 트랜스듀서 및 평면 배열의 빔패턴에 영향을 주게된다. 따라서 음향 방사출력의 계산은 소나용 트랜스듀서의 성능및 효율을 평가하는데 필수적이다. 음향 방사출력을 예측하기 위하여 무한 강성 배플에 고정된 수개의 트랜스듀서를 이론해석의 대상으로 설정하였다. 각 트랜스듀서는 자기방사 임피던스 및 상호방사 임피던스로 구성되어 있으며 이것의 총 방사 임피던스 및 음향반사 출력의 추출은 등가 전기회로 모델을 이용하였다. 이론및 수치해석의 결과에 근거하여 음향방사 출력은 각 트랜스듀서 상호간의 간섭의 양에 의존함을 보였으며 상호간섭에 의한 음향출력 손실은 25.05%에서 최고 51.52%정도임을 확인하였다.

  • PDF

한국형 고속전철 하니콤 바닥구조의 등가평판모델 및 방사소음평가 (The Floor Structure of Korean High Speed Train : Equivalent Plate Model and Acoustic Power Radiation)

  • 장준호;이상윤;홍성철;이우식;박철희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.398-404
    • /
    • 1998
  • The acoustic power reduction methods of the vibrating structures are valid to design the quite structure. To calculate the acoustic power, the dynamic responses have to be determined. It is not easy to analyse the structure composed of the corrugated panels. Because of the structural complexity and the many analysing times. To make up for these defects, the equivalent orthogonal panel is presented. Also the acoustic power prediction method of the vibrating structures is proposed. As examples, the equivalent material properties of the corrugated plates are obtained and the acoustic powers of the floor structure are calculated at several frequency regions for KHST.

  • PDF

ABCD 전송 파라메터를 사용한 광대역 음향 발신기의 역률 개선 연구 (Power Factor Compensation for Wideband Acoustic Projector Using Measurement Data and ABCD matrix)

  • 임준석;편용국
    • 전자공학회논문지 IE
    • /
    • 제48권3호
    • /
    • pp.10-15
    • /
    • 2011
  • 파워를 이용하는 음향 변환자를 설계할 경우 전기적 신호의 에너지가 가급적 많이 음향 에너지로 바뀌어서 전달되도록 하여야 한다. 이를 위해서는 방사임피던스를 포함한 초음파 변환자의 임피던스와 파워 앰프의 출력 임피던스 간에 정합이 필요하다. 특히 구동부의 출력 임피던스 값이 매우 작은 경우 센서의 역률 개선이 꼭 필요하다. 본 논문에서는 광대역 수중 음향 발신기의 역률 개선을 위해서 ABCD 전송 행렬을 사용한 정합 기법을 제안한다.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

원통형 음향 홀로그래피를 이용하여 구성한 유도전동기의 방사 음장 (Constructed Sound Field of an Induction Motor Using Cylindrical Acoustic Holography)

  • 김시문;김양한
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.919-929
    • /
    • 1997
  • Induction motors are used in many areas to transform electrical energy to mechanical energy. In the design of an induction motor, not only energy efficiency but also noise becomes an important factor. To effectively address the noise problem, it will be convenient if one can see where and how noise is generated and propagated. In this study sound radiation by an induction motor is visualized using cylindrical acoustic holography. To minimize the bias error by window effect Minimum Error Window(MEW) is used. Its performance is verified by numerical simulations. Based on these theoretical understanding, sound pressure measurement with an induction motor are performed. Not only sound radiation are visualized but sound pressure level and sound power level are also estimated. Results show that the main source is located at nearly bottom part of the motor and the total sound pressure level is 49dB, which satisfies the guideline value suggested by the KS C 4202.

  • PDF