• Title/Summary/Keyword: Acoustic Pressure Mode

Search Result 123, Processing Time 0.031 seconds

A Study on Source Mechanisms of Micro-Cracks Induced by Rock Fracture (암석파괴시 발생되는 미세균열의 발생원에 대한 연구)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.59-64
    • /
    • 1996
  • Acoustic Emission(AE) signals are emitted by a sudden release of strain energy associated with material damage. A multi-channels of LeCroy system and piezoelectric pressure transducers are employed for AE measurement to investigate the roles of AE in the propagation of macro cracks as well as the characteris-tics of AE wave in occurrence, amplitude and dominant frequency with changes in macro loading modes. Deduced crack opening volume of micro cracks varied widely and implies that AE events could be caused by crystal dislocations on a small scale and grain boundary movements on a large scale. Amplitude of first arrival AE wave emitted during mode I test was approximately 3 times higher than those from mixed mode test, while the number of AE count in mode I test was only 25% of mixed mode. It may imply that the total energy required for generation of a given fracture surface is similar regardless in change of macroloading modes.

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION (세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF

An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer (난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구)

  • Lee, Seung-Bae;Gwon, O-Seop;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

Analysis of the beam pattern of a thickness shear mode vibrator for vector hydrophones (벡터 하이드로폰을 위한 두께 전단형 진동자의 빔 패턴 해석)

  • Kim, Jungsuk;Kim, Hoeyong;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.158-164
    • /
    • 2017
  • Typical hydrophones in line array sensors for early detection of covert underwater targets can measure only sound-pressure-magnitude with the limitation of being unable to identify the direction of an incoming wave. In this study, a thickness shear mode vibrator was proposed as the main component of an inertia type vector hydrophone to measure both magnitude and direction of acoustic signals from targets. The equation to analyze the output voltage of the vibrator to an external force was derived, and the validity of the equation was verified through finite element analysis of a PMN-PT single crystal vibrator. The analysis results from this study will be utilized in the future for the design of inertia type vector hydrophones made of thickness shear vibrators.

Analysis on Propagation Characteristics and Experimental Verification of $A_1$ Circumferential Waves in Nuclear Fuel Rods Coated with Oxide Layers (산화막 피복 원전 연료봉에서 $A_1$ 원주파의 전파 특성 해석과 실험적 검증)

  • Joo, Young-Sang;Ih, Jeong-Guon;Jung, Hyun-Kyu;Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.189-199
    • /
    • 1999
  • The resonance scattering of acoustic waves from the cylindrical shells of nuclear fuel rods coated with oxide layers has been theoretically modeled and numerically analyzed for the propagation characteristics of the circumferential waves. The normal mode solutions of the scattering pressure of the coated shells have been obtained. The pure resonance components have been isolated using the newly proposed inherent background coefficients. The propagation characteristics of resonant circumferential waves for the shells coated with oxide layers are affected by the presence and the thickness of an oxide layer. The characteristics have been experimentally confirmed through the method of isolation and identification of resonances. The change of the phase velocity of the $A_1$ circumferential wave mode for the coated shell is negligible at the specified partial waves in spite of the presence of the oxide layer and the increase in coating thickness. Utilizing the invariability characteristics of the phase velocity of the $A_1$ mode, the oxide layer thickness of the coated shells can be estimated. A new nondestructive technique for the relative measurement of the coating thickness of coated shells has been proposed.

  • PDF

Effect of Particle Size Distribution on the Sensitivity of Combustion Instability for Solid Rocket Motors (입자 크기 분포도를 고려한 고체로켓 모터의 연소 불안정 민감도 예측)

  • Joo, Seongmin;Kim, Junseong;Moon, Heejang;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.37-45
    • /
    • 2015
  • Prediction of combustion instability within a solid-propellant rocket motor has been conducted with the classical acoustic analysis. The effect of particle size distribution on the instability has been analyzed by comparing the log-normal distribution to the fixed mono-sized particle followed by a survey of motor length scale effect between the baseline model and small scale model. Particle damping effect was more efficient for the small scale motor which has a relatively high unstable mode frequencies. It was also revealed that the prediction results by considering the particle size distribution show an overall attenuation of fluctuating pressure amplitude with respect to the mono-sized case.

LARGE EDDY SIMULATION OF THE COMPRESSIBLE FLOW OVER A OPEN CAVITY (큰에디모사기법을 이용한 공동 주위의 압축성유동 해석)

  • 오건제
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2003
  • Large eddy simulation is used to investigate the compressible flow over a open cavity, The sub-grid scale stresses are modeled using the dynamic model. The compressible Navier-Stokes equations are solved with the sixth order accurate compact finite difference scheme in the space and the 4th order Runge-Kutta scheme in the time. The results show a typical flow pattern of the shear layer mode of oscillation over the cavity. The votical disturbances, the roll-up of vorticity, and impingement and scattering of vorticity at the downstream cavity edge can be seen in the shear layer. Predicted acoustic resonant frequency is in good agreement with that of the empirical formula. The mean flow streamlines are nearly horizontal along the mouth of the cavity. The pressure has its minimum value in the vortex core inside the cavity.

Hardness and adhesion of the reactively sputtered Zr-ZrN on the stainless steel(SUS304) and tool steel(SKH9) (스테인레스와 공구강 위에 스퍼터링된 Zr-ZrN 코팅층의 경도 및 밀착성에 대한 연구)

  • 예길촌;신현준;권식철;백원승
    • Journal of Surface Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.316-326
    • /
    • 1993
  • Adhesion and hardeness are the most important properties of a hard coated layer which is applied to wear-resistant devices. Zr/ZrN layer was deposited on tool steel(SKH9) and stainless steel(SUS304) by a re-active D.C. magnetron sputtering technique and their microhardness and adhesion strength were measured for the films processed by changing the partial pressures of $N_2$ gas (4~10$\times$$10^{-4}$mbar) and the substrate bias voltage(0~250V). The adhesion strength was evaluated by acoustic signals through the scratch-test with the incremental applied load. As the partial pressure of $N_2$ gas and the substrate bias voltage were increased, the adhesion strength of tool steel was observed to be stronger than that of the stainless steel. The adhesion strength was generally, observed to decrease with the same tendency regardless of the kinds of substrates. The adhesion strength of tool steel was increased more and more strongly than that of stainless steel as heat-treated temperature was increased. The strength of tool steel was appeared to be high adhesion strength at $400^{\circ}C$. From the failure mode of the film during the scratch adhesion test, the cohesive failure was observed to be obvious and the adhesive failure in a minor portion in the Zr/ZrN doublelayer regardless of the kinds of substrates.

  • PDF

Flow Visualization by Light Emission in the Post-chamber of Hybrid Rocket (광도측정에 의한 하이브리드 로켓 후연소실의 유동 가시화)

  • Park, Kyung-su;Choi, Go Eun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.677-683
    • /
    • 2015
  • Hybrid rocket combustion displays low frequency instability(LFI, 10~30Hz) at a certain condition. Vortex shedding in the post-chamber is suspected to cause the occurrence of LFI. This study focused on the visualization of flow image using light emissions from high temperature combustion gas. Results shows that combustion pressure oscillates at a frequency of about 18 Hz, which is in phase with oscillations of light emission. Since LFI is not a property of thermo-acoustic instability, this result suggested there exists a physical coupling of pressure fluctuations with light emissions proportional to chemical reaction. Also POD analysis shows that dominant symmetric spatial modes in the stable combustion shift suddenly into asymmetric spatial pattern with the appearance of LFI. Especially, the appearance of mode 3 is a typical change of flow dynamics in unstable combustion representing a rotational fluid motions associated with vortex shedding.

Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disc Test (압열인장시험을 이용한 화강암의 지연파괴특성 및 장기안정성 평가)

  • Jung, Yong-Bok;Cheon, Dae-Sung;Park, Eui-Seob;Park, Chan;Lee, Yun-Su;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2014
  • Long-term stability and delayed failure of granite were evaluated through the laboratory test based on Wilkins method and Brazilian disc test (BDT) which yields tensile strength, mode I fracture toughness and subcritical crack growth parameters. Then, the long-term strength of granite was estimated by using analytical models and long-term stability of compressed air-energy storage (CAES) pilot cavern pressurized up to 5 ~ 6 MPa was evaluated using numerical code, FRACOD with the determined subcritical crack growth parameters. The results of test and analyses showed that the subcritical crack growth index, n was determined as 29.39 and the inner pressure of 5 ~ 6 MPa had an insignificant effect on the long-term stability of pilot cavern. It was also found that the measurement and analysis of acoustic emission events can describe the accumulation of damage due to subcritical crack growth quantitatively. That is, AE monitoring can provide the current status of rock under loading if we make an identical installation condition in the field with that of the laboratory test.