• 제목/요약/키워드: Acoustic Applications

검색결과 321건 처리시간 0.022초

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

발전설비 건전성평가를 위한 음향방출 비파괴검사 적용기술 - 제1편 : 음향방출 비파괴검사기술 이론(I) - (Nondestructive Testing and Applications for Integrity Assessment of Power Plant Facilities by Acoustic Emission Technology - Part 1 : The Theory of Acoustic Emission Technology(I) -)

  • 이상국
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.5-13
    • /
    • 2005
  • Acoustic emission(AE) is defined as the transient elastic waves thar are generated by the rapid release of energy. The advantage of AE is that very early crack growth can be detected well before a highly stressed component may fail. At present, an exact diagnosis is the most reliable means for determining the soundness of structures during power plant operations. AE monitoring has been applied successfully in power plants to determine mechanical problems, pressure vessel integrity and external valves leaks, vacuum leaks, the onset of cavitation in pumps and valves, the presence of flow(or no flow) in piping and heat exchange equipment, etc. Acoustic emission(AE) technology has recently strengthened its application base, and practitioners' understanding of the technique's fundamentals. This paper introduces the methods of a survey and assessment on AE monitoring applications in nuclear, fossil and hydraulic power plant. The main objective of this paper was to obtain information on various applications of AE technology in power plant.

  • PDF

셀룰로오스 압전종이의 특성 및 음향응용 가능성 (Cellulose piezoelectric paper: Characteristics and Its Possibility for Acoustic Applications)

  • 김재환;김정환;이상우;김흥수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.480-483
    • /
    • 2008
  • This paper reports a piezoelectric paper made with cellulose. Since cellulose has merits in terms of biodegradability, biocompatibility, abundance in nature, lightweight and cheap, piezoelectric paper can bring a broad technological impact in many areas, for example, sensors, actuators, speakers, microphones and microelectromechanical systems. Fabrication and characterization of the piezoelectric paper are illustrated and its possibility for acoustic applications is addressed with some preliminary device demonstrations.

  • PDF

Ranking Tag Pairs for Music Recommendation Using Acoustic Similarity

  • Lee, Jaesung;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.159-165
    • /
    • 2015
  • The need for the recognition of music emotion has become apparent in many music information retrieval applications. In addition to the large pool of techniques that have already been developed in machine learning and data mining, various emerging applications have led to a wealth of newly proposed techniques. In the music information retrieval community, many studies and applications have concentrated on tag-based music recommendation. The limitation of music emotion tags is the ambiguity caused by a single music tag covering too many subcategories. To overcome this, multiple tags can be used simultaneously to specify music clips more precisely. In this paper, we propose a novel technique to rank the proper tag combinations based on the acoustic similarity of music clips.

음향 센서 네트워크에서의 노드 레벨 이벤트 탐지 성능향상을 위한 학습 기반 CFAR 알고리즘 개선 (Learning-based Improvement of CFAR Algorithm for Increasing Node-level Event Detection Performance in Acoustic Sensor Networks)

  • 김영수
    • 대한임베디드공학회논문지
    • /
    • 제15권5호
    • /
    • pp.243-249
    • /
    • 2020
  • Event detection in wireless sensor networks is a key requirement in many applications. Acoustic sensors are one of the most frequently used sensors for event detection in sensor networks, but they are sensitive and difficult to handle because they vary greatly depending on the environment and target characteristics of the sensor field. In this paper, we propose a learning-based improvement of CFAR algorithm for increasing node-level event detection performance in acoustic sensor networks, and verify the effectiveness of the designed algorithm by comparing and evaluating the event detection performance with other algorithms. Our experimental results demonstrate the superiority of the proposed algorithm by increasing the detection accuracy by more than 45.16% by significantly reducing false positives by 7.97 times while slightly increasing the false negative compared to the existing algorithm.

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

음향방출기술에 의한 발전설비 비파괴검사 및 응용 (Nondestructive Testing and Applications for Electric Power Plant Equipments by Acoustic Emissin Technology)

  • 이상국
    • 비파괴검사학회지
    • /
    • 제24권4호
    • /
    • pp.396-409
    • /
    • 2004
  • 음향방출기술(acoustic emission technology)은 종래의 기존 비파괴검사법과는 달리 가동중인 설비의 건전성을 평가할 수 있으며 실시간으로 설비 상태의 진단이 가능한 실시간 감시기법이다. 즉 기존 비파괴검사법과는 달리 가동중인 설비에 대해 원격으로 결함을 탐지하고 결함 위치를 판정할 수 있는 연속감시 기능을 가진 비파괴 신기술로 최근 연구개발이 활발히 진행되고 있는 방법이다. 이러한 장점 때문에 대형 산업설비의 각종 기기들에 대한 감시 및 진단에 활용하고 있으며, 그 활용도가 점점 확대되고 있는 추세에 있다. 특히 종합적인 산업설비로 구성되어 있는 발전설비의 진단과 감시에 가장 효과적인 방법이라 할 수 있겠다. 본 논문에서는 원자력 화력 수력발전소 등의 발전설비에 대해 현재 적용중인 음향방출기술과 새로운 적용기술에 대해 서술하였다.

마이크로/나노 비파괴평가 기술(II): 음향특성계측 (Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties)

  • 김정석;박익근
    • 비파괴검사학회지
    • /
    • 제32권4호
    • /
    • pp.418-430
    • /
    • 2012
  • 본 논문은 재료의 표면검사와 음향특성 측정이 가능한 마이크로/나노 비파괴평가 기술을 소개한다. 이들 기술로 초음파원자현미경과 초음파현미경의 원리와 특징 그리고 응용분야에 대해서 기술하였다. 특히, 이들 기술은 표면과 표면직하의 이미지 관찰 외에도 음향특성을 측정하여 마이크로/나노 구조물 혹은 표면에서의 기계적인 물성평가가 가능한 기술이다. 따라서 기존 비파괴분야와 함께 첨단 산업분야에 있어 마이크로/나노 비파괴평가의 적용과 기술 개발이 향후 폭넓게 가능할 것으로 판단된다.

압전형 음향변환기용 음향소자 및 케이스의 설계 (Design of Acoustic Element and Case for the Piezoelectric Acoustic Transducer)

  • 김현철;고영준;박재성;남효덕;장호경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.711-714
    • /
    • 2000
  • In this study, the physical properties of the acoustic element and case with metal-piezoelectric ceramics were analyzed. The dielectric and piezoelectric properties of 0.5 wt% MnO$_2$and NiO doped 0.1Pb(Mg$\_$1/3Nb$\_$2/3)O$_3$-0.45PbTiO$_3$-0.45PbZrO$_3$ceramics were investigated aiming at acoustic transducer applications. The vibration characteristics for the laminated circular plate was analyzed for the various thickness and diameter of the piezoceramic layer and metal layer. Also, the acoustic characteristics for the geometrical form of case have been investigated. The design and fabrication method worked in this paper can be utilized in development of actuator and acoustic device.

  • PDF

압전형 음향변환기의 제작과 음향특성 (Fabrication and Acoustic Characteristics of the Piezoeletric Acoustic Transducer)

  • 김현철;고영준;남효덕;장호경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.413-416
    • /
    • 2000
  • In this study, the physical properties of the acoustic element and case with metal-piezoelectric ceramics were analyzed. The dielectric and piezoelectric properties of 0.5 wt% MnO$_2$ and NiO doped 0.1Pb(Mg$_{1}$3/Nb$_{2}$3/)O$_3$-0.45PbTiO$_3$-0.45PbZrO$_3$ceramics were investigated aiming at acoustic transducer applications. The vibration characteristics for the laminated circular plate was analyzed for the various thickness and diameter of the piezoceramic layer and metal layer. Also, the acoustic characteristics for the geometrical form of case have been investigated. The design and fabrication method worked in this paper can be utilized in development of actuator and acoustic device.

  • PDF