• Title/Summary/Keyword: Acidic polysaccharides

Search Result 65, Processing Time 0.019 seconds

Analysis of the Extraction Condition of Soluble Acidic Polysaccharides from Ginseng Marc (인삼박으로부터 수용성 산성다당체의 추출 조건 분석)

  • Choi, You-Jin;Hwang, Keum-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.1
    • /
    • pp.82-88
    • /
    • 2011
  • This study was carried out to investigate the optimum conditions for extraction of soluble acidic polysaccharides from ginseng marc. Method of carbazole-sulfuric acid was applied to determine the amount of acidic polysaccharides in ginseng marc. The amounts of soluble acidic polysaccharides in water extract of ginseng marc were increased with increasing extraction temperature. The contents of acidic polysaccharides were not significantly different despite the extraction time increasing from 0.5 hours to 6 hours. To estimate the rehydration rate of the freeze dried polysaccharide, the extracted acidic polysaccharide fraction powder was determined the amount of soluble acidic polysaccharides by carbazole-sulfuric acid method again. The rehydration rate of acidic polysaccharides from water-extract of red ginseng marc at room temperature was 100%. On the other hand, the rehydration rate of acidic polysaccharide of red ginseng marc at boiling temperature was about 50%. The rehydration rate of acidic polysaccharides from water-extract of white ginseng marc at room temperature was 50%. The rehydration rate of acidic polysaccharide of red ginseng marc at boiling temperature was about 40%. The rate of soluble acidic polysaccharide of Red Ginseng is higher than that of White Ginseng. We can find out the maximum extraction method of soluble acidic polysaccharide from ginseng marc.

Isolation and Purification of Polysaccharide from Fruiting body and Culture Broth of Agaricus blazei Murill

  • Youm, Yong-Soo;Hong, Eock-Kee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.343-347
    • /
    • 2005
  • The polysaccharides were extracted from fruiting body, mycelia, and cell-free broth of Agaricus blazei Murill. The crude polysaccharides were obtained by the ethanol addtion. They were further purified using ion-exchange chromatography and gel chromatography. Ion-exchange chromatography using DEAE-cellulose column separated neutral and acidic polysaccharides. Neutral polysaccharides were then purified with gel filtration chromatography. For single peak obtained from gel filtration chromatography was molecular weight was measured with Sepharose CL-6B. The same procedure with acidic polysaccharides were performed to get the purified polysaccharides.

  • PDF

Conditioning of the Extraction of Acidic Polysaccharide from Red Ginseng Marc (홍삼박으로부터 산성다당체의 최적 추출 조건 분석)

  • Chang, Eun-Ju;Park, Tae-Kyu;Han, Yong-Nam;Hwang, Keum-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.1
    • /
    • pp.56-61
    • /
    • 2007
  • This study was carried out to investigate the optimum conditions for extraction of acidic polysaccharides from red ginseng marc produced by manufacturing alcoholic extract from red ginseng. Method of carbazole-sulfuric acid was applied to determine the amount of acidic polysaccharides in red ginseng marc. The amounts of acidic polysaccharides in water extract of red ginseng marc were increased with increasing extraction temperature. The contents of acidic polysaccharides were not significantly different despite of the extraction time increasing from 6 hours to 48 hours. The contents of starch in water-extract of red ginseng marc were increased with increasing extraction temperature. The starch amounts in water extract of red ginseng marc extracted for 48 hours were increased. The yields of polysaccharide precipitated from water-extract of red ginseng marc were increased with increasing extraction temperature. The hydration rate of acidic polysaccharides and starch from water-extract of red ginseng marc were decreased with increasing extraction temperature. The contents of starch were not significantly different despite of the extraction time increasing from 6 hours to 48 hours at $8^{\circ}C$. However, the rehydration rate of acidic polysaccharide for 48 hours were decreased at $8^{\circ}C$. The rehydration rate of acidic polysaccharide and starch extracted from 6 hours to 24 hours at $25^{\circ}C$ were not significantly different, but those extracted for 48 hours were increased. From the above results, we suggest that by altering the extraction conditions in red ginseng marc it is possible to develop optimum conditions for extraction that modulate the proportions of acidic polysaccharide and starch.

Comparison of Ginsenosides and Acidic Polysaccharide Contents in Fresh Ginseng Cultivated in Different Seasons and Various Ages (수삼의 계절별 연근별 성분 변화)

  • Kang, Sung Ho;An, Beom Kyun;Hwang, Yu Jin;Yang, Byung Wook;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.305-311
    • /
    • 2019
  • The purpose of this study was to examine the changes in seasonal bioactive components of 4 and 6 years old fresh ginseng (Panax ginseng) and to provide basic information on the development of functional food using fresh ginseng. Seasonal changes were investigated by ginseng saponin analysis using HPLC method and acidic polysaccharides by carbazole sulfuric acid method. Total saponins showed the highest content of fresh ginseng collected in May, followed by March, July, and September. Fresh ginseng collected in May showed 2.5 times (4 years old) - 3.0 times (6 years old) higher than fresh ginseng collected in September. Acidic polysaccharides showed high content of fresh ginseng collected in March and September, and low content of fresh ginseng collected in May and July. From these results, the fresh ginseng collected in May can develop high concentrations of saponin. On the other hand, fresh ginseng collected in March and September is thought to be able to develop high concentration products of acidic polysaccharides.

Quantitative comparison of acidic polysaccharides in the endosperm of two major varieties of rice

  • Hyun, Gyu Hwan;Lim, Dong Kyu;Kwon, Sung Won
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.205-212
    • /
    • 2017
  • Rice endosperm, the portion that remains after milling, is the part of the rice seed that is primarily consumed as a source of nutrients. There have been many studies on polysaccharides, such as hemicellulose, cellulose, and pectins, derived from the cell walls of various plant groups. It has been reported that the acidic polysaccharide fractions, which contain water-soluble pectins that have been shown to have pharmacological effects in vivo and in vitro, have common chemical structures that include galacturonic acid polymers, rhamnose, arabinose, and galactose. However, few studies have been conducted on the acidic polysaccharides contained in the endosperm of rice. In this study, we quantitatively compared the differences in the acidic polysaccharide contents from samples from two of the main varieties of rice consumed as staple foods, japonica and indica, using a colorimetric method. Rice samples were collected from 39 different regions in Korea, China, Thailand and Vietnam. Acidic polysaccharide fractions were obtained by precipitation of the alcohol-insoluble residue (AIR) and enzyme treatment of each sample. The total amount of carbohydrates and uronic acid in each acidic polysaccharide fraction were measured using the phenol-sulfuric acid method and the carbazole-sulfuric acid method, respectively. The differences in the total polysaccharide contents in the acidic polysaccharide fractions were not statistically significant (p = 0.07), but the uronic acid contents were significantly different between the two groups (p = 0.04).

Preparation of Heparinoids from Acidic Plant Polysaccharides (식물성 산성당으로부터 헤파리노이드의 제조)

  • Kim, Yeong-Shik;Roh, Ji-Eun;Ann, Hyung-Soo;Park, Ho-Koon
    • YAKHAK HOEJI
    • /
    • v.36 no.4
    • /
    • pp.350-356
    • /
    • 1992
  • Anticoagulant activities were tested for the fifteen kinds of medicinal plants by measuring activated partial thromboplastin time (aPTT). Of them five kinds or species (Artemisia princeps, Sanguisorba officinalis, Artemisia apiacea, Eclipa alba, Schizonepeta tenuifolia) were selected and fractionated for the preparation of acidic polysaccharides. They were extracted with water by refluxing and the extracts were precipitated with ethanol. The precipitates were separated based on charge using a DEAE-Sephadex. The low salt and high salt fractions were sulfated with anhydrous pyridine and chlorosulfonic acid complex. In vitro anticoagulant activities of sulfated polysaccharides were tested by measuring aPTT, prothrombin time (PT), and factor Xa clotting time using normal human plasma. No relationship was found between the amount of uronic acids and anticoagulant activities, but the sulfated ones show the increase of activities. In vivo anticoagulant properties of the sulfated polysaccharide from Artemisia apiacea were also tested by the intraveneous administration of three different doses (3,5 and 10 mg/kg) to rats. APTT and PT were increased significantly and the action of factor Xa and thrombin mediated through antithrombin III were inhibited slightly.

  • PDF

Effect of Acidic Polysaccharides of White Ginseng on Lipolytic Action of Toxohormone-L from Cancerous Ascites Fluid (고려백삼의 산성다당체 성분이 암독소호르몬-L의 지방질분해에 미치는 영향에 관하여)

  • Lee, Seong-Dong;Jeon, Jung-Chi
    • The Korean Journal of Food And Nutrition
    • /
    • v.3 no.1
    • /
    • pp.9-12
    • /
    • 1990
  • Toxohormone-L is a lipolytic factor, found in ascites fluid of sarcoma 180-bearing mice and of patients with hepatoma. A substance that inhibited the lipolytic action of toxohormone-L was isolated from white ginseng powder. This substance was an acidic polysaccharides It inhibited toxohormone-L-induced lipolysis in a dose dependent manner at concentrations higher than 100g/ml.

  • PDF

Composition and Partial Structure Characterization of Tremella Polysaccharides

  • Khondkar, Proma
    • Mycobiology
    • /
    • v.37 no.4
    • /
    • pp.286-294
    • /
    • 2009
  • Heteropolysaccharides isolated from liquid cultures of nine Tremella species contained 0.3 to 1.2% protein, 2.7 to 5% ash, 0.9 to 3.4% acetyl groups, 76.5 to 84.2% carbohydrates and trace amounts of starch. The polysaccharides in aqueous solution were slightly acidic (pH 5.1 to 5.6). They consisted of the following monomeric sugars: fucose, ribose, xylose, arabinose, mannose, galactose, glucose and glucuronic acid. The backbones of the polysaccharide structures consisted of $\alpha$-(1$\rightarrow$3)-links while the side chains were $\beta$-linked.

Comparative Study on Immuno-Enhancing Effects of Red Ginseng Fractions (홍삼의 분획에 따른 면역활성 비교)

  • Hyun, Sun Hee;Kim, Eun Sun;Lee, Sang Min;Kyung, Jong Soo;Lee, Sang Myung;Lee, Jong Won;Kim, Mee Ree;Hong, Jin Tae;Kim, Young Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1665-1673
    • /
    • 2014
  • The objective of this study was to compare the compositions and immuno-enhancing effects of 6-year-old red ginseng powder (RGP) with those of its fractions. RGP was subjected to extraction with 100% ethanol to obtain an ethanol fraction (E) and residue 1 (R1). Then, R1 was subjected to extraction with distilled water to obtain water fraction (W) and residue 2 (R2). Chemical compositions were as follows: 4.94% acidic polysaccharides and 1.56% ginsenosides (amounts of Rg1, Re, Rf, Rg2, Rb1, Rc, Rd, and Rg3) in RGP, 0.11% acidic polysaccharides and 6.99% ginsenosides in E, 4.93% acidic polysaccharides and 0.40% ginsenosides in R1, 0.50% acidic polysaccharides and 0.30% ginsenosides in R2, and 7.46% acidic polysaccharides and 0.61% ginsenosides in W. Immuno-enhancing effects of fractions from RGP were examined based on suppression of immune responses by cyclophosphamide. In the first fraction test, the antibody response to SRBCs increased significantly in the R1-treated group, but not the E-treated group. In the second fraction test, W showed higher immuno-enhancing effect than R1 and R2. W, which contained the highest amount of acidic polysaccharides, restored numbers of T and B cells, macrophages, as well as $CD4^+$ and $CD8^+$ T cells in the spleen suppressed by cyclophosphamide. These results suggest that acidic polysaccharides from red ginseng may be more effective than saponin in enhancing immune functions and reducing immunotoxicity of cyclophosphamide.

Isolation and Characterization of Acidic Polysaccharides Activating Complement System from the Hot Water Extracts of Pteridium aquilinum var. latiusculum (고사리 열수 추출물로부터 보체계 활성화 산성 다당의 분리 및 특성)

  • O, Byeong-Mi;Gwon, Mi-Hyang;Na, Gyeong-Su
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.3
    • /
    • pp.159-168
    • /
    • 1994
  • From the hot water extract of bracken(Pteridium aquilinum var. latiusculum), a Korean win edible plant, anti-complementary acidic polysaccharides were Isolated. Crude polysaccharide fraction(HPA-1) was obtain ed by methanol reflux, ethanol precipitation, dialysis, and lyophilization. HPA-1 contained 81.80% of total sugar, 30.40% of uronic acid, and 15.60cA of protein. HPA 1 was purified consecutively by cetavlon fractionation and chromatography including ion exchange nth DEAE-Sepharose CL 6B and gel permeation with Sephadex G-100 and Sepharose CL-6B. HPA-2- IVa and HPA-Va-2 were nearly homogeneous on HPLC and had 500,000 and 560,000 daltons of molecular weights, respectively. HPA-2-Wa consisted of fucose, galacturonic acid, and glucuronic acid at the molar ratio of 1.40 : 0.97 : 1.88. HPA-2-Va 2 was composed of rhamnose, galactose, and galacturonic acid at the molar ratio of 1.00 : 1.38 : 1.39. The polysaccharides were found to activate the C3 component both In the presence and In the absence of Ca2+ through the crossed-immunoelectrophoresis suggesting that those Involved in both classical and alternative complement pathway.

  • PDF