• Title/Summary/Keyword: Acid stress

Search Result 1,642, Processing Time 0.042 seconds

Neuronal Cell Protective Effect of Dendropanax morbifera Extract against High Glucose-Induced Oxidative Stress (High Glucose로 유도된 산화 스트레스에 대한 황칠나무 잎 추출물의 뇌신경세포 보호 효과)

  • Kim, Jong Min;Park, Seon Kyeong;Guo, Tian Jiao;Kang, Jin Yong;Ha, Jeong Su;Lee, Du Sang;Kwon, O-Jun;Lee, Uk;Heo, Ho Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.938-947
    • /
    • 2016
  • Antioxidant activities and neuroprotective effects of ethyl acetate fraction from Dendropanax morbifera (EFDM) against high glucose-induced oxidative stress and neurotoxicity were investigated to confirm their physiological activities. An 80% ethanolic extract of D. morbifera showed the highest contents of total phenolic compounds as well as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. The extract was fractionated using several solvents, and the ethyl acetate fraction showed the highest activities in ferric reducing/antioxidant power and malondialdehyde inhibitory assays. To evaluate the neuroprotective effect based on antioxidant activities, cell viability was assessed using PC12 and MC-IXC cells in $H_2O_2$- and high glucose-induced cytotoxic assays, respectively. EFDM evidently showed neuroprotective effects in all cells (neuron-like PC12 cells and human brain-originated neuroblastoma MC-IXC cells). Inhibitory effect of the extract on acetylcholinesterase (AChE) as an acetylcholine-hydrolyzing enzyme was performed to examine the effect on cognitive function. EFDM presented an AChE inhibitory effect. Finally, high-performance liquid chromatography analysis showed that the major phenolic compound of EFDM is probably a rutin.

Effects of Oligosaccharide-Supplemented Soy Ice Cream on Oxidative Stress and Fecal Microflora in Streptozotocin-Induced Diabetic Rats (당뇨쥐에서 올리고당 첨가 콩아이스크림이 산화스트레스와 장생태에 미치는 효과)

  • Her, Bo-Young;Sung, Hye-Young;Choi, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1536-1544
    • /
    • 2005
  • We have investigated physiological effects of soy ice cream with oligosaccharide on oxidative stress and fecal microflora in streptozotocin-induced diabetic rats. Parched soybean powder (7.6$\%$, w/w) substituted skimmed milk and cream, soybean oil (7.6$\%$, w/w) for milk oil, and fructooligosaccharide (9.5$\%$, w/w) for sucrose. Five types of ice cream were prepared: regular, oligosaccharide-supplemented regular, soy, oligosaccharide - supplemented soy, and oligosaccharide - supplemented black soybean ice cream . Freeze - dried ice cream was supplemented to AIN93-based diets at 30$\%$ (w/w) containing 6.5$\%$ soy and 4.5$\%$ fructooligosaccharide. Diabetes was induced by intramuscular administration of streptozotocin, and experimental diets were given for 4 weeks. Plasma concentration of thiobarbituric acid reactive substances (TBARS) was significantly increased in the diabetic rats compared with the normal rats, then was significantly decreased with feeding soy ice cream containing diet compared with regular ice cream containing diet among the diabetic groups. The levels of TBARS in liver were decreased in the rats that were fed either soy or oligosaccharide ice cream compared with the rats that were fed regular ice cream. Erythrocyte superoxide dismutase activity was significantly increased in the rats fed soy ice cream compared with the rats fed regular ice cream. Erythrocyte glutathione peroxidase and catalase activities were significantly increased in the rats fed black soybean ice cream. Fecal concentrations of Lactobacilli were significantly higher in the rats fed soy ice cream and oligosaccharide- supplemented soy ice cream than that of the rats fed regular ice cream. Fecal concentrations of Bifidobacteria were significantly higher in the rats fed oligosaccharide- supplemented soy ice cream than that of the rats fed regular ice cream. In conclusion, oligosaccharide- supplemented soy ice cream suppressed lipid peroxidation and improved the got microbiota in diabetic rats compared with milk-based regular ice cream.

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.

The Effect of Translationally Controlled Tumor Protein (TCTP) of the Arctic Copepod Calanus glacialis on Protecting Escherichia coli Cells against Oxidative Stress (북극 동물플랑크톤 Calanus glacialis TCTP (Translationally Controlled Tumor Protein)가 산화적 스트레스 상태에서 E. coli 세포의 저항성에 미치는 효과)

  • Park, Yu Kyung;Lee, Chang-Eun;Lee, Hyoungseok;Koh, Hye Yeon;Kim, Sojin;Lee, Sung Gu;Kim, Jung Eun;Yim, Joung Han;Hong, Ju-Mi;Kim, Ryeo-Ok;Han, Se Jong;Kim, Il-Chan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.931-938
    • /
    • 2020
  • Translationally controlled tumor protein (TCTP) is one of the most abundant proteins in various eukaryotic organisms. TCTPs play important roles in cell physiological processes in cancer, cell proliferation, gene regulation, and heat shock response. TCTP is also considered an important factor in the resistance to oxidative stress induced by dithiothreitol or hydrogen peroxide (H2O2). Arctic calanoid copepods have a variety of antioxidant defense systems to regulate the levels of potentially harmful reactive oxygen species generated by ultraviolet radiation in the Arctic marine ecosystem. However, information on the antioxidant activity of TCTP in the Arctic Calanus glacialis is still scarce. To understand the putative antioxidant function of the Arctic copepod C. glacialis TCTP (Cg-TCTP), its gene was cloned and sequenced. The Cg-TCTP comprised 522 bp and encoded a 174-amino acid putative protein with a calculated molecular weight of ~23 kDa. The recombinant Cg-TCTP (Cg-r TCTP) gene was overexpressed in Escherichia coli (BL21), and Cg-rTCTP-transformed cells were grown in the presence or absence of H2O2. Cg-rTCTP-transformed E. coli showed increased tolerance to high H2O2 concentrations. Therefore, TCTP may be an important antioxidant protein related to tolerance of the Arctic copepod C. glacialis to oxidative stress in the harsh environment of the Arctic Ocean.

Effect of buchu (Allium tuberosum) on lipid peroxidation and antioxidative defense system in streptozotocin-induced diabetic rats (부추가 Streptozotocin 유발 당뇨쥐의 지질과산화와 항산화방어체계에 미치는 영향)

  • 송영선;정현실;노경희;조혜연;박지영;최춘연;권태완
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.333-342
    • /
    • 2003
  • The pathogenic effort of high glucose, possibly in concert with fatty acids, is mediated to vascular complications of diabetes via increased production of reactive oxygen species(ROS), reactive nitrogen species(RNS), and subsequent oxidative stress. This study was carried out to investigate the suppressive effect of buchu(Allium tuberosum) on oxidative stress in streptozotocin(STZ)-induced diabetes in Sprague Dawley male rats. The effect of buchu supplementation (10%) on lipid peroxidation, and antioxidative defense system in blood and liver was compared among normal rats fed basal diet(normal) and diabetic rats fed basal diet(DM-control) or 10% buchu-supplemented diet(DM-buchu). Diabetes was experimentally induced by the femoral muscle injection of 50 mg STZ per kg of body weight. Animals were sacrificed after 4 wks of experimental diets feeding. The induction of diabetes by STZ elevated the level of lipid peroxidation represented by thiobarbituric acid-reactive substances(TBARS) and conjugated dienes in plasma, LDL, liver, and erythrocytes. 10% buchu-supplemented diet significantly reduced the levels of conjugated dienes in erythrocytes(p<0.05) and lowered TBARS in liver and LDL to the levels of control. Induction of diabetes by STZ elevated Mn-superoxide dismutase(Mn-SOD) activity and lowered activities of glutathionine reductase(GSH-red) and glutathionine peroxidase(GSH-px). Catalase activity was not affected by the induction of diabetes by STZ. However, buchu supplementation to diabetic rats significantly elevated catalase activity(p<0.05) and slightly elevated GSH-px and GSH-red activities in liver. GSH levels of blood and liver were lowered or not changed by induction of diabetes by STZ, respectively, while buchu supplementation to diabetic rats significantly elevated hepatic GSH level (p<0.05). In conclusion, it can be concluded that buchu might be a food source to attenuate oxidative stress in diabetic patients by inhibiting lipid peroxidation, by increasing hepatic GSH level, and by inducing anti-oxidative enzyme systems.

Antioxidant and antiobesity activities of oral treatment with ethanol extract from sprout of evening primrose (Oenothera laciniata) in high fat diet-induced obese mice (달맞이순 (Oenothera laciniata) 에탄올 추출물 섭취가 고지방식이로 유도한 비만 마우스에서 항산화 및 비만억제효과)

  • Kwak, Chung Shil;Kim, Mi-Ju;Kim, Sun Gi;Park, Sunyeong;Kim, In Gyu;Kang, Heun Soo
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.529-539
    • /
    • 2019
  • Purpose: Sprouts of evening primrose (Oenothera laciniata, OL) were reported to have high contents of flavonoids and potent antioxidant activity. This study examined the antioxidant and antiobesity activities of OL sprouts to determine if they could be a natural health-beneficial resource preventing obesity and oxidative stress. Methods: OL sprouts were extracted with 50% ethanol, evaporated, and lyophilized (OLE). The in vitro antioxidant activity of OLE was examined using four different tests. The antiobesity activity and in vivo antioxidant activity from OLE consumption were examined using high fat diet-induced obese (DIO) C57BL/6 mice. Results: The IC50 for the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging and superoxide dismutase (SOD)-like activities of OLE were 26.2 ㎍/mL and 327.6 ㎍/mL, respectively. OLE exhibited the ferric reducing antioxidant power (FRAP) activity of 56.7 ㎍ ascorbic acid eq./mL at 100 ㎍/mL, and an increased glutathione level by 65.1% at 200 ㎍/mL compared to the control in the hUC-MSC stem cells. In an animal study, oral treatment with 50 mg or 100 mg of OLE/kg body weight for 14 weeks reduced the body weight gain, visceral fat content, fat cell size, blood leptin, and triglyceride levels, as well as the atherogenic index compared to the high fat diet control group (HFC) (p < 0.05). The blood malondialdehyde (MDA) level and the catalase and SOD-1 activities in adipose tissue were reduced significantly by the OLE treatment compared to HFC as well (p < 0.05). In epididymal adipose tissue, the OLE treatment reduced the mRNA expression of leptin, PPAR-γ and FAS significantly (p < 0.05) compared to HFC while it increased adiponectin expression (p < 0.05). Conclusion: OLE consumption has potent antioxidant and antiobesity activities via the suppression of oxidative stress and lipogenesis in DIO mice. Therefore, OLE could be a good candidate as a natural resource to develop functional food products that prevent obesity and oxidative stress.

Inhibitory Effect of Hot-Water Extract of Paeonia japonica on Oxidative Stress and Identification of Its Active Components (백작약 열수추출물의 산화적 스트레스 억제효과 및 유효성분 동정)

  • Jeong, Ill-Yun;Lee, Joo-Sang;Oh, Heon;Jung, U-Hee;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.739-744
    • /
    • 2003
  • This study was carried out to investigate the antioxidative activity and to identify the active components of hot-water extract of Paeoniajaponica (PJ), which was a main ingredient of a herb mixture preparation recently established as a potent candidate of radioprotector in our laboratory. The water extract was fractionated with CHCl$_3$, EtOAc and n-BuOH. The extract and its fractions showed very low activity in hydroxyl radical scavenging test. In lipid peroxidation test, the extract, EtOAc and water fractions showed moderate inhibition with the ratio above 50%. In DPPH radical scavenging test, the extract, EtOAc and water fraction showed high activity with the ratio above 80%, especially. EtOAc fraction scavenged the radicals as much as synthetic antioxidant (BHA), even at low concentration. It is suggested that mai or partition for antioxidative activity of Paeonia japonica was EtOAc fraction. Subsequently, two active compounds (PJE021-1 and JE024-1) from EtOAc fraction were isolated by using MCI gel and silica gel column chromatography The two compounds inhibited remarkedly the $H_2O$$_2$-induced DNA damage in human peripheral blood lymphocytes, measured by single-cell gel electrophoresis (SCGE). PJE021-1 protected the cells to almost negative control level, dose-dependently. PJE024-1 exhibited a potent inhibition with the ratio of 71% at even low concentration (0.5 $\mu\textrm{g}$/$m\ell$). Finally, their chemical structures were identified as gallic acid (PJE021-1) and (+)-catechin (PJE024-1), respectively, on the basis of the speculation of spectral and physical data.

Inhibitory Effects of Dropwort (Oenanthe javanica) Extracts on Memory Impairment and Oxidative Stress and the Qualitative Analysis of Isorhamnetin in the Extracts (미나리 추출물의 기억력 손상 억제와 산화스트레스 억제 효과 및 Isorhamnetin 분석)

  • Won, Beom Young;Shin, Ki Young;Ha, Hyun Jee;Wee, Ji-Hyang;Yun, Yeo Sang;Kim, Ye Ri;Park, Yong Jin;Jung, Kyoung Ok;Sung, Hea Mi;Lee, Hyung Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • This study was conducted to investigate effect of the acetylcholinesterase inhibitor activity, the protective effect of the extract on SH-SY5Y cell death by $H_2O_2$, the memory improvement from scopolamine-induced rat. Moreover, the antioxidant activity of isorhamnetin from the dropwort (Oenanthe javanica) was investigated. Acetylcholinesterase inhibitor activity was highest (28.59%) in Hwasun O. javanica extract (H-OJE). H-OJE and Naju O. javanica extract (N-OJE) were not significantly different. SH-SY5Y cell death deceased to 37.23% and 36.68% for H-OJE and N-OJE, respectively, following treatment with the extracts. O. javanica extracts showed a protective effect against $H_2O_2$-induced neurotoxicity. Treatment with O. javanica extracts slightly improved scopolamine-induced (1 mg/kg, i.p.) memory impairment in rats. H-OJE contained the highest total phenolic and flavonoid contents of 117 mg/g and 30 mg gallic acid equivalents/g, respectively, and had a DPPH radical scavenging activity ($SC_{50}$) of $113.8{\mu}g/mL$ and ABTS radical scavenging activity of $48.2{\mu}g/mL$, which was higher than the other extracts. The thiobarbituric acid reactive substances value was highest (50.2%) in H-OJE. Antioxidant activity differed significantly among dropwort extracts. Isorhamnetin was known as one of the flavonoid and for having neuroprotective effect. So we analyzed acid-hydrolyzed O. javanica extract HPLC. The results were that peak at 14 min and spectrum of the extracts was consistent with standard solution. The results of LC/MS/MS analysis were that the extract and standard solution were confirmed total ion chromatogram at identical time, precursor ion was 317 $[M-H]^+$ m/z, product ion was 302 $[M-H]^+$ m/z. Overall, the results showed that the dropwort extract led to memory improvement and had antioxidant activity. Based on these finding, further research to investigate the production of ethanol extract of dropwort as a processed food is warranted.

Investigation of False Positive Rates Newborn Screening using Tandem Mass Spectrometry (TMS) Technology in Single Center (단일기관에서 이중 질량 분석법(tandem mass spectrometry technology)을 이용한 선천성 대사이상 검사의 위양성율에 대한 연구)

  • Kim, Hyunsoo;Shin, Son Moon;Ko, Sun Young;Lee, Yeon Kyung;Park, Sung Won
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • Objective: Newborn screening leads to improved treatment and disease outcomes, but false-positive newborn screening results may impact include parental stress and anxiety, perception of child as unhealthy, parent-child relationship dysfunction, and increased infant hospitalizations. The purpose of this study was to investigate of the false positive rates and the causative factors of false positive results in Tandem Mass Spectrometry (TMS) in single center. Methods: Records were reviewed for all 18,872 subjects who were born in Cheill General Hospital, during January 1st, 2012 to December 31st, 2014. 17,292 neonates (91.62%) were tested for tandem mass screening almost in 2-5th day of life. Newborn babies whose first results were abnormal had been tested repeatedly by same methods in 7-14 day. If the results were abnormal again, further evaluation was performed. TMS analysis included data for the 43 disorders screened for using TMS broken down into three categories: fatty acid oxidation disorders, organic acidurias, and aminoacidopathies. The impact of several factors on increased false positive rates was analyzed using a multivariate analysis: time from birth to sample collection, birth weight, birth height, BMI, gender, gestational age, delivery type. Results: Males of the subjects were 8942 (51.7%), female 8350 (48.3%), the mean gestational age was $38.6{\pm}1.7$ weeks, the average birth weight $3,155.6{\pm}502.4g$, the average birth height $49.1{\pm}2.9cm$, and the average BMI $13.0{\pm}3.8(kg/m^2)$. Vaginal delivery cases were 9713 (56.2%), caesarean section 7,579 (43.8%). The average date of the inspection was $2.8{\pm}1.1$ days. 224 cases were identified as TMS positive. All the subjects were false positive (222/17,292, 1.30%) except 2 cases (1 male; benign phenylketonuria and 1 female; Short chain acyl-CoA dehydrogenase deficiency). The false positive rates were 0.61% in fatty acid oxidation disorders, 0.25% in organic acidurias, and 0.45% in aminoacidopathies. In our study, the date of inspection got late, the false positive rates got higher. Because almost the cases of late test date were in treatment in neonatal intensive care unit so their test date was affected by their medical conditions. False positive rate was higher in extreme immaturity${\leq}27$ weeks than newborns of gestational age >27 weeks [OR=6.957 (CI=1.273-38.008), p<0.025] and extremely low birth weight<1,000 g than newborns of birthweight ${\geq}1,000g$ [OR=5.616 (CI=1.134-27.820), p<0.035]. Conclusion: False positive rate of TMS was 1.30% in Cheil General Hospital. Lower gestational age and birth weight impacted on increased false positive rates. Better understanding of factors that influence the reporting of screening tests, and the ability to modify these important factors, may improve the screening process and reduce the need for retesting. of screening tests, and the ability to modify these important factors, may improve the screening process and reduce the need for retesting.

  • PDF

Preparation of Liquid Crystal Emulsion for Transdermal Delivery of Glycyrrhizic Acid and Physical Characteristics and In Vitro Skin Permeation Studies (글리시리직애씨드의 경피 전달을 위한 액정 에멀젼의 제조와 물리적 특성 및 In Vitro 피부투과 연구)

  • Jung, Jin Woo;Yoo, Cha Young;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.315-324
    • /
    • 2015
  • In this study, we prepared liquid crystal emulsion composed of amphiphilic substance $C_{14-22}$ alcohol, $C_{12-20}$ alkyl glucoside, behenyl alcohol and studied liquid crystal emulsion of properties and in vitro skin permeation. The results of formulation experiments, the clear liquid crystalline structure was observed in the ratio of $C_{14-22}$ alcohol 0.8%, $C_{12-20}$ alkyl glucoside 3.2%, behenyl alcohol 4% in the formulation. The results of physical property measurements, the viscosity of liquid crystal emulsion and O/W emulsion applied as a control group was respectively $1871.26{\sim}1.15Pa{\cdot}s$, $1768.69{\sim}1.14Pa{\cdot}s$ and the shear stress of O/W emulsion was 178.68 ~ 909.18 Pa, that of liquid crystal emulsion was 190.45 ~ 919.38 Pa. The storage modulus of O/W emulsion was 3428.53 ~ 9157.45 Pa, that of liquid crystal emulsion was 4487.82 ~ 8195.59 Pa. The tan (delta) value of O/W emulsion which means a ratio of viscosity to elasticity was 0.43 ~ 0.19, and that of liquid crystal emulsion was 0.23 ~ 0.25. The water content value on the skin for liquid crystal emulsion was significantly higher from 1 h to 6 h compared with that of O/W emulsion and the transepidermal water loss on the skin was significantly superior in skin moisture loss suppression from 30 min to 4 h compared with that of O/W emulsion. The results of skin permeation using glycyrrhizic acid, the result of skin permeation amount of liquid crystal emulsion for 24 h was $64.58{\mu}g/cm^2$, that of O/W emulsion was $37.07{\mu}g/cm^2$, that of butylene glycol solution was $41.05{\mu}g/cm^2$. Hourly permeability results, it is showed that skin penetration effect of the liquid crystal emulsion increases after 8 h. These results suggest that liquid crystal emulsions are effective for skin moisturizing effect and function as potential efficacy ingredient delivery system for the transdermal delivery.