• 제목/요약/키워드: Acid stress

검색결과 1,642건 처리시간 0.034초

Nonlinear response of complex fluids under LAOS(large amplitude oscillatory shear) flow

  • Ahn, Kyung-Hyun;Kyu Hyun;Nam, Jung-Gun;Manfred Wilhelm;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.97-105
    • /
    • 2003
  • In the previous paper (Hyun et al.,2002), we have investigated the shape of storage modulus (G') and loss modulus (G") of complex fluids under large amplitude oscillatory shear (LAOS) flow. As the strain amplitude increases, owever, the stress curve becomes distorted and some important information may be smothered during data processing. Thus we need to investigate the stress data more precisely and systematically. In this work, we have obtained the stress data using high performance ADC (analog digital converting) card, and investigated the nonlinear response of complex fluids, 4wt% xanthan gum (XG), 2 wt% PVA/ 1 wt% Borax, and 1 wt% hyaluronic acid (HA) solutions, using Fourier transformation (FT) rheology. Comparing the strain signals in time domain with FT parameters in frequency domain, we could illustrate the sensitivity and importance of FT rheology. Diverse and unique stress patterns were observed depending on the material system as well as flow environment. It was found that they are not the outcome of experimental deficiency like wall slip but characteristics of the material system. When nonlinear response of complex fluids is analyzed, the intensity and phase angle of higher harmonic contributions should be considered together, and the shape of the stress signal was found to be strongly dependent upon phase angle.ngle.

중금속 유도 산화적 스트레스에 대한 금은화의 세포 보호 효과 (Lonicera japonica inhibited the oxidative Stress induced by the heavy metal)

  • 염승희;박선빈;박선동;박광일;김영우
    • 대한한의학방제학회지
    • /
    • 제30권3호
    • /
    • pp.155-163
    • /
    • 2022
  • Objectives : Lonicera japonica is known for anti-inflammation and antibiotic effect in Korean medicine. This study aimed for investigating the cytoprotective effect of Lonicera japonica extract (LJE) for HepG2 cells against arachidonic acid (AA)+iron-induced oxidative stress. Methods : The effect of LJE on cell viability was assessed by MTT assay. ROS assay was selected to assess antioxidant effect of LJE. To assess LJE's effect on mitochondrial function, flow cytometric analysis was operated. And immunoblot analysis was used to establish the underlying mechanism of LJE. Results : LJE protected HepG2 cells against AA+iron-induced oxidative stress by phosphorylation of liver kinase B1 and blocked the decline of procaspase 3. Also, LJE preserved the mitochondrial membrane permeability induced by AA+iron. Conclusion : LJE protected the hepatocyte from AA+iron-induced oxidative stress by activation of LKB1 by the preservation of mitochondrial functions.

나복자의 항산화 효과 (Antioxidant effect of Raphani Semen (Raphanus sativus L.))

  • 박선빈;강승호;박광일;이원융
    • 대한한의학방제학회지
    • /
    • 제31권1호
    • /
    • pp.41-51
    • /
    • 2023
  • Objectives : Raphani Semen (Raphanus sativus L.) is known for the various beneficial effects in Korean medicine. This study aimed to investigate the effect of Raphani Semen extract (RSE) against arachidonic acid (AA)+iron-induced oxidative stress in cells. Methods : Ingredients, their target information, oxidative stress liver injury-related proteins was obtained from various network pharmacology databases and software. A hypergeometric test and enrichment analysis were conducted to evaluate associations between protein targets of RSE. The cell viability was assessed by MTT assay, and immunoblot analysis was used to confirm the molecular mechanisms. Results : A compound-target network of RSE was constructed, which consisted of 336 edges between 18 ingredients and 123 protein targets. PI3K-Akt signaling pathway, ErbB signaling pathway, HIF-1 signaling pathway, PPAR signaling pathway, and AMPK signaling pathway was significantly associated with protein targets of RSE. RSE protected HepG2 cells against AA+iron-induced oxidative stress as mediated with AMPK signaling. Conclusion : RSE was found to protect the cells against oxidative stress via the AMPK signaling pathway.

Amelioration of non-irrigated stress and improvement of sweet pumpkin fruit quality by Kushneria konosiri endophytic bacteria

  • Sang Tae Kim;Mee Kyung Sang
    • 환경생물
    • /
    • 제41권4호
    • /
    • pp.539-549
    • /
    • 2023
  • This study examined the impact of two bacterial strains, H05E-12 and H05R-04, on alleviating non-irrigation-induced stress and its subsequent effects on the fruit productivity of sweet pumpkin plants. When subjected to non-irrigation-induced stress, the lipid peroxidation, proline, total phenol, and total soluble sugar content significantly decreased in plants treated with either H05E-12 or H05R-04 compared to the control. In a greenhouse experiment under non-irrigated conditions, H05E-12-treated plants exhibited higher stomatal conductance than the control, although there was no significant change in the soil plant analysis development(SPAD) value due to treatment. Upon re-watering, an increase in fruit diameter was observed in H05E-12-treated plants, and the L-ascorbic acid content in the fruit also showed a significant increase compared to the control. The H05E-12 strain was identified as Kushneria konosiri. To the best of our knowledge, this is the first report detailing the beneficial effects of K. konosiri on the alleviation of non-irrigation-induced stress and the promotion of plant growth in sweet pumpkin plants.

Early Growth, Carbohydrate and Phytic Acid Contents of Germinating Rice Seeds under NaCl Stress

  • Park So-Hyeon;Sung Jwa-Kyung;Lee Su-Yeon;Park Jae-Hong;Lee Ju-Young;Jang Byoung-Choon;Lee Ki-Sang;Song Beom-Heon;Kim Tae-Wan
    • 한국작물학회지
    • /
    • 제51권2호
    • /
    • pp.137-141
    • /
    • 2006
  • Germination characteristics and alterations in soluble sugar-starch transition and phytic acid during germination were studied in rice seeds under saline conditions. NaCl significantly reduced the speed of germination. Also, the radicle growth out of seeds was severely inhibited by the exposure to NaCl solution, thus, seeds were almost impossible to grow to seedlings. Soluble sugar was remarkably accumulated, whereas starch was decomposed stepwise during seed germination. The metabolism of soluble sugar and starch in germinating seeds showed a distinct difference. The level of phytic acid in seeds decreased in all NaCl treatments during germination, but the level was affected differently by NaCl concentration in the two varieties. Overall, our results suggest that salt stress retard the radicle growth of rice seeds, and affect the starch-to-sugar conversion and the decomposition of phytic acid differently in two varieties.

만성적으로 알코올을 섭취한 쥐의 조직 내 Fatty Acid Ethyl Esters (FAEEs)와 지질과산화물 형성에 미치는 영향 (Effect of Chronical Ethanol Ingestion on the Levels of Fatty Acid Ethyl Esters (FAEEs) and Lipid Peroxidation in Rat Tissues)

  • 김민석;김세나;박현서
    • Journal of Nutrition and Health
    • /
    • 제40권5호
    • /
    • pp.413-418
    • /
    • 2007
  • The present study was designed to observe the effect of chronically ingested ethanol on the level of fatty acid ethyl esters (FAEEs), which is a non-oxidative metabolite of ethanol metabolism in tissues, and its correlation to the status of oxidative stress in rats. Forty male Sprague Dawley rats weighing 145 - 155 g were divided into 2 groups, Control and EtOH. All rats were fed Lieber-DeCarli liquid diet for 4 weeks by pair-feeding. An isocaloric maltose dextrin was added in replace of 50 g ethanol (36%kcal) in the control diet. Chronically ingested ethanol significantly increased the content of FAEEs in pancreas and liver, but not in brain. The level of 2-thiobarbituric acid reactive substances (TBARS) was significantly increased, but ${\alpha}-tocopherol$ level was significantly decreased in pancreas and liver. However, the levels of TBARS and ${\alpha}-tocopherol$ in brain were not significantly affected by ethanol ingestion. Therefore, chronically ingested ethanol might cause tissue damage by increasing the levels of FAEEs and TBARS and dissipating more ${\alpha}-tocopherol$ in tissues.

Protective Effects of Chlorogenic Acid against Experimental Reflux Esophagitis in Rats

  • Kang, Jung-Woo;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.420-425
    • /
    • 2014
  • Esophageal reflux of gastric contents causes esophageal mucosal damage and inflammation. Recent studies show that oxygen-derived free radicals mediate mucosal damage in reflux esophagitis (RE). Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is one of the most abundant polyphenols in the human diet and possesses anti-inflammatory, antibacterial and anti-oxidant activities. In this context, we investigated the effects of CGA against experimental RE in rats. RE was produced by ligating the transitional region between the forestomach and the glandular portion and covering the duodenum near the pylorus ring with a small piece of catheter. CGA (10, 30 and 100 mg/kg) and omeprazole (positive control, 10 mg/kg) were administered orally 48 h after the RE operation for 12 days. CGA reduced the severity of esophageal lesions, and this beneficial effect was confirmed by histopathological observations. CGA reduced esophageal lipid peroxidation and increased the reduced glutathione/oxidized glutathione ratio. CGA attenuated increases in the serum level of tumor necrosis factor-${\alpha}$, and expressions of inducible nitric oxide synthase and cyclooxygenase-2 protein. CGA alleviates RE-induced mucosal injury, and this protection is associated with reduced oxidative stress and the anti-inflammatory properties of CGA.

Liver metabolic perturbations of heat-stressed lactating dairy cows

  • Fan, Caiyun;Su, Di;Tian, He;Li, Xiaojiao;Li, Yu;Ran, Lei;Hu, Ruiting;Cheng, Jianbo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1244-1251
    • /
    • 2018
  • Objective: The objective of the present study was to elucidate the mechanism underlying liver metabolic perturbations in dairy cows exposed to heat stress (HS). Methods: Liquid chromatography massabl spectrometry was used to analyze metabolic differences in livers of 20 dairy cows, with and without exposure to HS. Results: The results revealed 33 potential metabolite candidate biomarkers for the detection of HS in dairy cows. Fifteen of these metabolites (glucose, lactate, pyruvate, acetoacetate, ${\beta}$-hydroxybutyrate, fumaric acid, citric acid, choline, glycine, proline, isoleucine, leucine, urea, creatinine, and orotic acid) were previously found to be potential biomarkers of HS in plasma or milk, discriminating dairy cows with and without HS. Conclusion: All the potential diagnostic biomarkers were involved in glycolysis, amino acid, ketone, tricarboxylic acid, or nucleotide metabolism, indicating that HS mainly affected energy and nucleotide metabolism in lactating dairy cows.

3-(4′-hydroxyl-3′, 5′-dimethoxyphenyl) Propionic Acid Suppresses NO Production and Elevates GSH Levels in Murine Macrophages

  • Song, Young-Sun;Choi, Chun-Yeon;Suh, Hongsuk;Song, Yeong-Ok
    • Preventive Nutrition and Food Science
    • /
    • 제9권3호
    • /
    • pp.270-275
    • /
    • 2004
  • Previous studies have shown that kimchi and kimchi-derived 3-(4'-hydroxyl-3', 5'-dimethoxyphenyl) propionic acid have anti-oxidative and hypolipidemic effects in rats and rabbits. This study was designed to investigate whether chemically synthesized 3-(4'-hydroxyl-3', 5' -dimethoxyphenyl) propionic acid (HDMPPA) may ameliorate oxidative stress through the regulation of nuclear factor KB (NFkB) activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells. Treatment of RAW 264.7 cells with 400 uM of HDMPPA significantly reduced LPS-stimulated nitric oxide (NO) production. Treatments with HDMPPA at 100 uM to 400 uM concentrations significantly elevated glutathione (GSH) level. However, cell viability and thiobarbituric acid-reactive substances (TBARS) concentrations were not affected by the concentrations of HDMPPA used. The specific DNA binding activities of NFKB, a transcription factor which is sensitive to oxidative stress, were not down-regulated by HDMPPA treatments. These results suggest that HDMPPA may have weak anti-oxidative activity against LPS challenge by scavenging NO and stimulating GSH production.