• Title/Summary/Keyword: Acid solution

Search Result 4,946, Processing Time 0.035 seconds

Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (I): Evaluation of Acid Stability of Commercial Nanofiltration Membranes (나노여과에 의한 중금속 함유 산성 폐에칭액의 재생(I): 상용 나노여과 막의 산 안정성 평가)

  • Youm, Kyung-Ho;Shin, Hwa-Sup;Jin, Cheon-Deok
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • In this study the nanofiltration (NF) membrane treatment of a nitric acid waste solutions containing $Pb^{+2}$ heavy metal ion discharging from the etching processes of an electronics and semiconductors industry has been studied for the purpose of recycling of nitric acid etching solutions. Three kinds of NF membranes (General Electric Co. Duraslick NF-4040 membrane, Dow Co. Filmtec LP-4040 membrane and Koch Co. SelRO MPS-34 4040 membrane) were tested for their separation efficiency (total rejection) of $Pb^{+2}$ ion and membrane stability in nitric acid solution. NF experiments were carried out with a dead-end membrane filtration laboratory system. The membrane permeate flux was increased with the increasing storage time in nitric acid solution and lowering pH of acid solution because of the enhancing of NF membrane damage by nitric acid. The membrane stability in nitric acid solution was more superior in the order of Filmtec LP-4040 < Duraslick NF-4040 < SelRO MPS-34 4040 membrane. The total rejection of Pb+2 ion was decreased with the increasing storage time in nitric acid solution and lowering the pH of acid solution. The total rejection of $Pb^{+2}$ ion after 4 months NF treatment was decreased from 95% initial value to 20% in the case of Duraslick NF-4040 membrane, from 85% initial value to 65% in the case of SelRO MPS-34 4040 membrane and from 90% initial value to 10% in the case of Filmtec LP-4040 membrane. These results showed that SelRO MPS-34 4040 NF membrane was more suitable for the treatment of an acidic etching waste solutions containing heavy metal ions.

Analysis of cyanide free electroless Au plating solution by capillary elecrophoresis (캐피라리 전기 영동법에 의한 비시안 무전해 Au 도금액의 분석)

  • Han, Jaeho;Kim, DongHyun
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.120-132
    • /
    • 2022
  • In the non-cyanide-based electroless Au plating solution using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent, analysis of each component constituting the plating solution is essential for the analysis of the reaction mechanism. And component analysis in the plating solution is important for monitoring component changes in the plating process and optimizing the management method. Capillary Electrophoresis (CE) method is rapid, sensitive and quantitative and could be readily applied to analysis of Aun+ ion, complexing agent and reducing agent in electroless Au plating solution. In this study, the capillary electrophoresis method was used to analyze each component in the electroless Au plating solution in order to elucidate the complex bonding form and the plating mechanism of the non-cyanide-based electroless Au plating bath. The purpose of this study was to establish data for optimizing the monitoring and management method of plating solution components to improve the uniformity of precipitation and stability. As a result, it was confirmed that the analysis of thiomalic acid as a complexing agent and Aun+ ions and the analysis of aminoethanethiol as a reducing agent were possible by capillary electrophoresis. In the newly developed non-cyanide-based electroless Au plating solution, it was confirmed that Aun+ ions exist in the form of Au+ having a charge of +1, and that thiomalic acid and Au+ are combined in a molar ratio of 2 : 1. In addition, it was confirmed that aminoethanethiol can form a complex by combining with Au+ ions depending on conditions as well as acting as a reducing agent.

Separation of Copper & Cobalt by Solvent Extraction in Organic Acid Leaching Solution (유기산 침출용액에서 용매추출법에 의한 구리 및 코발트 분리)

  • Kim, Tae-Young;Ryu, Seong-Hyung;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.3-10
    • /
    • 2015
  • A study has been made on the recovery & separation of cobalt and copper from organic acid leaching solution by solvent extraction. The experimental parameters such as the equilibrium pH, concentration of extractant and phase ratio were observed. Copper was extracted using LIX 84 and Cobalt was extracted using cyanex 272 and versatic acid 10. Experimental results showed that extraction percent of copper was 99% at above eq. pH 2.0 and then more than 90% of cobalt were extracted by cyanex 272 in eq. pH 6.0 and versatic acid 10 in eq. pH 7.5. Stripping of copper and cobalt from the loaded organic phases can be accomplished by sulfuric acid as a stripping reagent and 120 ~ 150 g/L of $H_2SO_4$ was effective for the stripping of copper and cobalt respectively. Finially, the basic optimal process for recovery of copper and cobalt from the bio-leaching solution was proposed.

Preparation and Characterization of Microfiltration Membranes for Water Treatment (수처리용 정밀여과 멤브레인의 제조 및 특성 연구)

  • Jung, Boram;Kim, Nowon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.50-62
    • /
    • 2014
  • An asymmetric microfiltration membranes were prepared with polysulfone by an immersion precipitation phase inversion method. Microfiltration membranes were prepared by polysulfone/N-methyl-2-pyrrolidone/polyvinylpyrrolidone/phosphoric acid casting solution and water coagulant. The vapor induced phase inversion method was used to prepare the membranes. The pore size and the morphology were changed by the phosphoric acid additive, the temperature of casting plate and the exposure time at the relative humidity of 74%. The morphology of membranes was investigated by scanning electron microscopy and microflow permporometer. By the addition of the phosphoric acid additive in the casting solution, the morphology of the prepared membranes were changed from a dense sponge structure to a loose asymmetric sponge structure. Due to the addition of catalytic amount of phosphoric acid to NMP casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 3,000 LMH. The temperature of casting plate and exposure time had a apparent effect on the skin layer structure and the pore size and the porosity of the membrane.

THE EFFECT OF ACID CONCENTRATION AND pH OF LACTATE BUFFER SOLUTION ON THE PROGRESS OF ARTIFICIAL CARIES LESION IN HUMAN TOOTH ENAMEL (유산완충액을 이용한 인공치아우식의 형성에 미치는 산의 농도와 pH에 관한 연구)

  • Park, Seong-Ho;Lee, Chan-Young;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.277-290
    • /
    • 1993
  • Dental caries is considered to be caused by demineralization by organic acid produced by microorganism. But the formation of subsurface lesion in initial caries make it diffcult to explain by simple demineralization. This study is carried out on the basis of thermodynamic concept proposed by Margolis and Moreno. The purpose of this study is to evaluate the effects of acid concentration and pH of lactate buffer system on the artificial caries lesion progress. 160 teeth without any crack, defect or opaque enamel were used and coated with nail varnish except the window ($2{\times}3$ mm). Under the constant degree of saturation(D.S.). The teeth were divided into 8 groups according to acid concentration(10mM, 25mM, 50mM, 100mM) and pH(4.3, 5.0, 6.0). Each group was immersed in buffer solution for 3, 6, 9, 18 days under controlled temperature($25^{\circ}C$). After cutting through the window and grinding, the specimens, 100-150 um in thickness, were imbibed in water or air and examined using polarilizing microscope. The depth of the surface and subsurface surface lesion were measured. 1. In the constant pH and D. S. value, the subsurface lesion progresses more rapidly as the concentration of lactic acid increases. (0.01, 0.025, 0.05, 0.1) 2. In the constant acid concentration and DS value, the subsurface lesion progresses more slowly as the pH increases. (4.3, 5.0, 5.5, 6.0) 3. The width of surface lesion seems to be constant independant of pH and acid concentration.

  • PDF

Adsorptive Preconcentration and ICP-AES Determination for Trace Amount of Ni(II) and Zn(II) in Aqueous Solution (수용액 중 극미량 니켈(II)과 아연(II)의 흡착농축 및 ICP-AES 정량에 관한 연구)

  • Choi, Jong-Moon;Choi, Sun-Do
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.73-78
    • /
    • 2005
  • A determination method of trace Ni(II) and Zn(II) in aqueous solution was studied and developed by adsorbing on titanium dioxide. For this purpose, several conditions were optimized such as the pH of sample solution, adsorption time, the types and concentration acid, and desorption time. The titanium dioxide was added in sample solution which was pH adjusted. Then, the sample solution was stirred for 5 minutes. This mixture was stored in room temperature for 30 minutes to allow adsorption. After filtering and washing the titanium dioxide, the analytes were dissolved from the titanium dioxide on membrane filter by an ultrasonic vibration for 10 minutes in 1.0 M $HNO_3$ solution. Then, this sample solution was analysed using ICP-AES. The adsorption equilibrium was achieved in 30 minutes. The desorption was the most of effective with 1.0 M(mol/l) nitric acid solution, and desorption time was 10 minutes. This procedure was applied for the analysis of two real samples, i.e., brown seaweed and tangle. The recoveries of Ni(II) and Zn(II) in spiked samples were 89.4${\sim}$98.9% for analytes.

Prediction of Alkaline Copper Quat (ACQ) Wood Preservative Concentration by Turbidity (탁도에 의한 구리·알킬암모늄화합물계 목재방부제(ACQ)의 농도 예측)

  • Lee, Jong Shin;Kim, Kyoung Tae;Choi, Gwang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.743-749
    • /
    • 2016
  • The concentration control of wood preservatives is necessary to produce a preservative treated wood having a uniform quality. Concentration measurement method of wood preservatives to be easily used in the field has not been developed yet. This study examined the way to estimate the concentration from turbidity of ACQ wood preservative that can be relatively easily measured by using a portable turbidity meter. The addition of phosphoric acid solution in an alkaline ACQ solution having a very low turbidity is created a suspension of the white substance and the turbidity suddenly increased. The optimum amount of addition of the phosphoric acid solution is until the pH of ACQ solution reaches 7, the turbidity of the ACQ solution reaches maximum value. Excessive addition of the phosphoric acid solution results in a turbidity decrease with acidification of the ACQ solution. Also ACQ solution becomes transparent. The high significance was recognized with positive correlation between the concentration and the turbidity of the ACQ solution. From the t-test, The significant difference between the actually measured concentrations and the concentrations predicted by the regression equation for industrial ACQ solutions was not recognized. Thus, it was possible to know that concentration prediction and control of industrial ACQ solution using the turbidity and a regression equation. Therefore, using the regression equation and turbidity is expected to be able to management the concentration of ACQ solution in the industrial field.

A Study on the Sol-Gel Reaction Kinetics of Sodium Silicate Solution (규산(硅酸)나트륨 수용액(水溶液)의 솔-젤 반응속도론적(反應速度論的) 고찰(考察))

  • Kim, Chul-Joo;Yoon, Ho-Sung;Jang, Hee-Dong
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.34-42
    • /
    • 2008
  • The properties of sodium silicate solution were surveyed by using the yellow silicomolybdic method, and the formation of silica sol from sodium silicate solution and the growth of silica sol were investigated in this study. The $SiO_2$ content of 2 wt% in sodium silicate solution was proper to oxidize sodium silicate with sulfuric acid. After the removal of sodium ions in sodium silicate solution, the pH of silicate solution had to be controlled above 9 for the stabilization of silicate solution. The condensation between silicic acid species and silica nuclei surfaces has been studied at $20{\sim}80^{\circ}C$ and pH 10 in silicate solutions with silica nuclei. The reaction falls into two kinetics regimes, limited at high silicic acid species concentration by polymerization, but at lower concentration by a process whereby deposited silicic acid species condenses further to silica. The overall condensation is first-order in silicic acid species concentration, proceeded toward to pseudo equilibrium concentration, $C_x$, rather than the solubility of amorphous silica. The heat of solution of amorphous silica was 3.34 kcal/mol and exhibits an Arrhenius temperature dependence with an apparent activation energy of 3.16 kcal/mol in the range of $20{\sim}80^{\circ}C$.

Cross-flow Nanofiltration of PCB Etching Waste Solution Containing Copper Ion (구리이온을 함유한 PCB 폐에칭액의 Cross-flow 나노여과)

  • Park, Hye-Ri;Nam, Sang-Won;Youm, Kyung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.272-277
    • /
    • 2014
  • In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion ($Cu^{+2}$) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a cross-flow membrane filtration laboratory system. The permeate flux was decreased with the increasing copper ion concentration in sulfuric acid solution and lowering pH of acid solution, and its value was the range of $4.5{\sim}23L/m^2{\cdot}h$. Total rejection of copper ion was decreased with the increasing copper ion concentration, lowering pH of acid solution and decreasing cross-flow rate. The total rejection of copper ion was more than 70% at the experimental condition. The SelRO MPS-34 4040 NF membrane was represented the stable flux and rejection for 1 year operation.

Addition Effect of Seed-associated or Free Linseed Oil on the Formation of cis-9, trans-11 Conjugated Linoleic Acid and Octadecenoic Acid by Ruminal Bacteria In Vitro

  • Wang, J.H.;Song, M.K.;Son, Y.S.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1115-1120
    • /
    • 2002
  • The effects of seed-associated or free linseed oil on fermentation characteristics and long-chain unsaturated fatty acids composition, especially the formation of conjugated linoleic acid (CLA) and octadecenoic acid (trans-11 $C_{18:1}$, $t-C_{18:1}$) by mixed ruminal bacteria were examined in vitro. Concentrate (1% of culture solution, w/v, as-fed basis) with ground linseed (0.6% of culture solution, w/v, DM basis) or linseed oil as absorbed onto ground alfalfa hay was added to 600 ml mixed solution consisting of strained rumen fluid and artificial saliva at the ratio of 1:1 in a glass culture jar. The culture jar was covered with a glass lid with stirrer, and placed into a water-bath ($39^{\circ}C$) and incubated anaerobically up to 24 h. Seed-associated or free linseed oil did not significantly affect the pH and ammonia concentration in the culture solution. Molar percent of acetate tended to increase while that of propionate decreased with the addition of free oil treatment throughout the incubation. Differences in bacterial number were relatively small, regardless of the form of supplements. Decreasing trends in the compositions of linoleic acid ($C_{18:2}$) and linolenic acid ($C_{18:3}$) but increasing trends of stearic acid ($C_{18:0}$), $t-C_{18:1}$ and CLA compositions were found from culture contents up to 12h incubation when incubated with both ground linseed and linseed oil. The compositions of $C_{18:0}$, $C_{18:2}$ and $C_{18:3}$ were greater but those of oleic acid ($C_{18:1}$), $t-C_{18:1}$ and CLA were smaller in a culture solution containing ground linseed than those containing linseed oil. The ratio of $t-C_{18:1}$ to CLA was lower in the culture solutions containing linseed oil up to 12h incubations as compared to those containing ground linseed.