• Title/Summary/Keyword: Acid protease

Search Result 669, Processing Time 0.024 seconds

Changes of Free Sugar and Free Amino Acid during the Natto Fermentation used by Bacillus subtilis S.N.U 816 (Bacillus subtilis S. N. U 816 균주를 이용한 Natto 제조중 유리당 및 유리아미노산의 변화)

  • Kim, Bok-Ran;Han, Yong-Bong;Park, Chang-Hee
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.192-197
    • /
    • 1987
  • Natto was produced by fermenting local soybeans Bacillus subtilis S.N.U. 816. The changes of chemical composition, enzyme activity and texture of NATTO during the fermentation were investigated. The amount of amino type and watr soluble nitrogens were increased as the fermentation progressed, although the former seemed to reach a plateau at about 20 hours of the fermentation, of the protease activity were increased until 16 hours of fermentation at which time they tended to reach plateaus. Among the inspected free sugars (fructose, glucose, sucrose, maltose), remarkable increases in the levels of fructose and glucose were observe3 after 4 hours of the fermentation. Since then their contents, however, were reduced very low as the processing went on, and sucrose contents dropped drastically to about 10% level and stayed low thereafter. Free amino acid contents of natto during 20 hours of the fermentation were or 2 times greater than those of the unfermented steamed soybean, the 24 hours ferment, respectively. Sensory evaluation revealed that 20 hours of fermentation produced the best quality products based on taste, odor, and color, considering all the data, it seems possible to conclude that the optimum of time for fermentation of natto at $42^{\circ}C$ is 20 hours.

  • PDF

The Molecular Profiling of a Teleostan Counterpart of Follistatin, Identified from Rock Bream Oplegnathus fasciatus which Reveals its Transcriptional Responses against Pathogenic Stress

  • Herath, H.M.L.P.B;Priyathilaka, Thanthrige Thiunuwan;Elvitigala, Don Anushka Sandaruwan;Umasuthan, Navaneethaiyer;Lee, Jehee
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.273-281
    • /
    • 2015
  • The follistatin (FST) gene encodes a monomeric glycoprotein that plays a role in binding and inhibiting the functions of members of the transforming growth factor (TGF)-${\beta}$ superfamily. Thus, FST facilitates a wide variety of functions, ranging from muscle growth, to inflammation and immunity. In this study, we sought to characterize an FST counterpart, RbFST, which was identified from rock bream Oplegnathus fasciatus. The RbFST cDNA sequence (2,419 bp) contains a 933-bp open reading frame (ORF) that encodes a putative amino acid sequence for RbFST (35 kDa). The putative amino acid sequence contains a Kazal-type serine protease inhibitor domain (51-98 residues) and an EF-hand, calcium-binding domain (191-226 residues). Additionally, this sequence shares a high identity (98.7%) with the Siniperca chuatsi FST sequence, with which it also has the closest evolutionary relationship according to a phylogenetic study. Omnipresent distribution of RbFST transcripts were detected in the gill, liver, spleen, head kidney, kidney, skin, muscle, heart, brain, and intestine of healthy animals, with significantly higher expression levels in the heart, followed by the liver tissue. Under pathogenic stress caused by two bacterial pathogens, Streptococcus iniae and Edwardsiella tarda, RbFST transcription was found to be significantly up-regulated. Altogether, our findings suggest the putative role of RbFST in immune related responses against pathogenic infections, further prefiguring its significance in rock bream physiology.

Isolation and Identification of Yarrowia lipolytica 504D producing Alkaline Proteinase (Alkaline Proteinase를 생산하는 Yarrowia lipolytica 504D의 분리 동정)

  • Kim, Chang-Hwa;Jin, Ingnyol;Yu, Choon-Bal
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.75-81
    • /
    • 1998
  • The yeast strain 504D, isolated from salted shrimp soup, showed the best proteolytic activity under alkaline condition. The yeast formed vegetative cells in almost optimal media for yeasts, but formed only pseudohyphae in the MM medium containing citric acid and true hyphae in the MM medium containing N-acetylglucosamin and ${\beta}$-D-glucose. The yeast was classified as hemiascomycetes to form ascospores by sexual reproduction, and formed blastospores and athrospores by asexual reproduction. The yeast strain did not assimilate almost of the carbon sources, nitrate and nitrite, but some organic acids and alcohols. The fatty acids of whole cells were composed of 53.67% unsaturated fatty acids and 14.58% saturated, and, especially, C17:1 was observed in this strain but not in two control yeasts. However, almost of all results were very similar to the morphological and physiological characteristics of Yarrowia lipolytica KCCM 12495 and KCCM 35426, except for a little differences which are the composition of fatty acids and the manner of mycellium formation. Therefore, the isolated yeast strain 504D is identified as a Yarrowia lipolytica.

  • PDF

Hepatitis E Virus Methyltransferase Inhibits Type I Interferon Induction by Targeting RIG-I

  • Kang, Sangmin;Choi, Changsun;Choi, Insoo;Han, Kwi-Nam;Roh, Seong Woon;Choi, Jongsun;Kwon, Joseph;Park, Mi-Kyung;Kim, Seong-Jun;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1554-1562
    • /
    • 2018
  • The type I interferons (IFNs) play a vital role in activation of innate immunity in response to viral infection. Accordingly, viruses have evolved to employ various survival strategies to evade innate immune responses induced by type I IFNs. For example, hepatitis E virus (HEV) encoded papain-like cysteine protease (PCP) has been shown to inhibit IFN activation signaling by suppressing K63-linked de-ubiquitination of retinoic acid-inducible gene I (RIG-I) and TANK-binding kinase 1 (TBK1), thus effectively inhibiting down-stream activation of IFN signaling. In the present study, we demonstrated that HEV inhibits polyinosinic-polycytidylic acid (poly(I:C))-induced $IFN-{\beta}$ transcriptional induction. Moreover, by using reporter assay with individual HEV-encoded gene, we showed that HEV methyltransferase (MeT), a non-structural protein, significantly decreases RIG-I-induced $IFN-{\beta}$ induction and $NF-{\kappa}B$ signaling activities in a dose-dependent manner. Taken together, we report here that MeT, along with PCP, is responsible for the inhibition of RIG-I-induced activation of type I IFNs, expanding the list of HEV-encoded antagonists of the host innate immunity.

Effects of Replacement of Fish Meal by Soy Protein Isolate on the Growth, Digestive Enzyme Activity and Serum Biochemical Parameters for Juvenile Amur Sturgeon (Acipenser schrenckii)

  • Xu, Q.Y.;Wang, C.A.;Zhao, Z.G.;Luo, L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1588-1594
    • /
    • 2012
  • An 8-wk experiment was conducted to evaluate the effect of replacing fish meal (FM) with soy protein isolate (SPI) on the growth, digestive enzyme activity and serum biochemical parameters of juvenile Amur sturgeon (Acipenser schrenckii). SPI was used to replace 0, 25, 50, 62.5, 75, 87.5, 100% of dietary FM and 100% replacement supplemented crystalline amino acid. Healthy sturgeon with an average initial weight of $26.38{\pm}0.24$ g were randomly assigned to 24 aquaria (8 treatments with triplicates each) at an initial stocking density of 11 fish per aquarium and cultured for 8 wks. The results showed that 75.00% or more substitution resulted in a poor weight gain rate, feed conversion ratio and survival rate compared to that of fish fed the control diet (p<0.05), whereas no significant differences were observed between diets of 25.00% to 62.50% substitution. Protease, lipase and amylase activity in foregut, mid-gut and hindgut were significantly (p<0.05) decreased by diets where SPI replacement levels were 62.50% or more. Levels of serum total protein (TP) and globulin decreased significantly from 21.03, 10.34 to 14.05, 5.63 g/L with the increasing dietary SPI (p<0.05), but alkaline phosphatase activity significantly increased (p<0.05). In addition, supplemental crystalline amino acid in the FM absence diet did not improve growth performance, intestine digestive enzyme activities and serum biochemical parameters. In conclusion, the results from this study showed adverse effects of inclusion of SPI in diets on growth performance, feed utilization and serum biochemical parameters in juvenile Amur sturgeon. Based on WGR and replacement ratio presented in this report, a 57.64% replacement level was recommended.

Purification and Characterization of Fibrinolytic Enzymes from Tricholoma saponaceum (할미송이버섯으로부터 혈전용해효소의 정제 및 특성 연구)

  • Kim, Jun-Ho
    • The Korean Journal of Mycology
    • /
    • v.28 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • Two fibrinolytic enzymes were purified from the fruiting bodies of Tricholoma saponaceum. The enzymes have a molecular weight of 18(FE-1) and 18.2(FE-2) kDa, respectively, and include $Zn^{2+}$ ion as determined by ICP/MS. The N-terminal amino acid sequence of the two enzymes were exactly the same: A-L-Y-V-G-X-S-P-X-Q-Q-S-L-L-V. The activity of FE-1 was highly inhibited by EDTA and 1,10-phenanthroline, indicating that the enzyme is a metalloprotease. The activity of FE-1 was slightly increased by $Mg^{2+},\;Zn^{2+},\;Fe^{2+}\;and\; Co^{2+}$, however, the enzyme activity was totally inhibited by $Hg^{2+}$. Addition of $Zn^{2+}\;and\;Co^{2+}$ reversed the inhibition caused by 1,10-phenanthroline. It has a pH optimum at pH 7.5, suggested that FE-1 was a neutral protease. It shows the maximum fibrinolytic activity at $55^{\circ}C$, is completely inactivated above at $65^{\circ}C$.

  • PDF

Cloning, Sequencing, and Expression of cDNA Encoding Bovine Prion Protein

  • Kang, Sang-Gyun;Kang, Sung-Keun;Lee, Deog-Yong;Park, Yong-Ho;Hwang, Woo-Suk;Yoo, Han-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.417-421
    • /
    • 2004
  • A normal prion protein (PrPc) is converted to a protease resistant isoform (PrPsc) by an apparent self-propagating activity in bovine spongiform encephalopathies (BSE), which is a neurodegenerative disease. The cDNA encoding bovine PrP open reading frame (ORP) in Korean cattle was cloned by polymerase chain reaction (PCR). The cloned cDNA had a length of 795 base pairs which coded for a protein of 264 amino acid residues with a calculated molecular mass of 28.6 kDa. Identities of 90, 90, 79 and 78% on nucleotide and 94, 94, 84, and 84% on amino acid sequence were shown to PrP genes from sheep, goat, human, and mouse, respectively. The cloned DNA was ligated into the pQE30 expression vector and transformed into E. coli M15. The PrP was expressed by induction with isopropyl-$\beta$-D-thiogalactoside (IPTG) and purified on the Ni-NTA affinity column. High specific activities of the recombinant PrP were observed in the fraction of pH 5.8 eluate and showed a molecular mass of-29 kDa on SDS-PAGE and Western blot analysis.

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A.;Chauhan, P.S.;Anandham, R.;Han, Gwang-Hyun;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1577-1584
    • /
    • 2010
  • In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Isolation and Characterization of Siderophore-Producing Bacteria with Various Plant Growth-Promoting Abilities as a Potential Biocontrol Agent (잠재적 미생물 농약으로서 다양한 식물성장 촉진 활성을 가진 siderophore 생산 세균의 분리와 특성)

  • Choi, Seunghoon;Yoo, Ji-Yeon;Park, SungJin;Park, MinJoo;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.925-933
    • /
    • 2020
  • To develop eco-friendly microbial inoculants, siderophore-producing bacteria were isolated and identified, and their production characteristics and plant growth-promoting abilities were investigated. A strain S21 was isolated from rhizosphere of Korean perilla (Perilla frutescens) and identified as Enterobacter amnigenus by phenotypic properties and 16S rRNA gene sequencing. The highest siderophore production was obtained in a medium containing 0.5% fructose, 0.1% urea, 0.5% K2HPO4 and 0.1% succinic acid. By using this improved medium, siderophore production increased by 2.5 times compared to that of basal medium. The strain S21 showed insoluble phosphate solubilizing, ammonification and antifungal activities, and also produced hydrolytic enzymes (protease and lipase), indoleacetic acid and 1-aminocyclopropane-1-carboxylate deaminase. Our data suggest that E. amnigenus S21 is a potential candidate that can be used as eco-friendly biocontrol agent and biofertilizer.

Isolation and characterization of Brcpi1 gene encoding phytocystatin from chinese cabbage (Brassica rapa L.) seedlings (배추 유래 phytocystatin 유전자, Brcpi1의 분리 및 발현특성 분석)

  • Jung, Yu-Jin;Cho, Yong-Gu;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.407-414
    • /
    • 2009
  • A cDNA clone encoding phytocystatin was isolated from Brassica rapa seedlings, through rapid amplification of cDNA ends (RACE). This gene (name as Brcpi1; GenBank accession no.: EF079953) had a total length of 881 bp with an open reading frame of 609 bp, and encoded predicted polypeptide of 203 amino acid (aa) residues including a putative N-terminal signal peptide. Other relevant regions found its sequence included the G and PW conserved aa motifs, and the consensus LARFAV sequence for phytocystatins and the reactive site QVVAG. The BrCPI1 protein shared 95, 94, 81, 80 and 78% identity with other CPI proterins isolated from Brassica oleracea (BoCPI-1), Arabidopsis thaliana (AtCY SB), Glycine max (GmCPI), Oryza sativa (OsCYS-2) and Zea may (ZmCPI) at amino acid level, respectively. Southern blot analysis showed that Brcpi1 was a low copy gene. Expression pattern analysis revealed that Brcpi1 was a tissue-specific expressing gene during reproductive growth and strongly expressed at mature seedling stages. Furthermore, overexpression of Brcpi1 in transgenic Arabidopsis was enhanced tolerance to salt and cold stresses. Meanwhile the juvenile seedling of Brcpi1 transgenic plants was not affected by various concentrations ABA in MS medium. Taken together, the results showed that Brcpi1 functioned as a cysteine protease inhibitor and it exhibited a protective agent against diverse types of abiotic stress, which induced this gene in a tissue- and stress-specific manner.