• Title/Summary/Keyword: Acid phosphatase-1

Search Result 511, Processing Time 0.028 seconds

Effect of Ssangwha-tang Fermented by Lactobacillus fermentum on Osteoclast Differentiation and Osteoporosis of Ovariectomized Rats (Lactobacillus fermentum으로 발효한 쌍화탕의 파골 세포 분화와 난소 적출한 랫트의 골다공증에 미치는 영향)

  • Shim, Ki-Shuk;Lee, Ji-Hye;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.1
    • /
    • pp.149-155
    • /
    • 2010
  • Objective : Ssangwha-tang is a traditional medicine formula widely prescribed for a decrease of fatigue after an illness in Korea. The aim of this study is to investigate the effect of Ssangwha-tang fermented by Lactobacillus fermentum (SF) on osteoclast differentiation in vitro and on bone metabolism of an ovariectomized rat in vivo. Methods : Tartrate-resistant acid phosphatase activity and staining were applied to evaluate the formation of osteoclasts. Ovariectomized rats were orally administrated with SF (30 ml/kg/day) for 12 weeks. Serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, triglyceride, phosphate, calcium levels were determined. Effect of SF on bone loss were studied by histological analysis and the measurement of bone mineral density. Results : SF significantly inhibited tartrate-resistant acid phosphatase activity and formation of osteoclasts in RAW264.7 cells stimulated by receptor activator for nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL). In addition, SF significantly decreased the level of triglyceride and increased the level of low-density lipoprotein. Moreover, the decrease of trabeculae of the femur was partially prevented in ovariectomized rats administrated with SF. Conclusions : SF treatment could prevent ovariectomy induced bone loss and its effects could be medicated by the inhibition of osteoclastogenesis.

Molecular Cloning and Characterization of Serine/Threonine Phosphatase from Rat Brain

  • Yoo, Byoung-Kwon;Lee, Sang-Bong;Shin, Chan-Young;Kim, Won-Ki;Kim, Sung-Jin;Kwang, Ho-Ko
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.153-159
    • /
    • 2000
  • A novel serine/threonine protein phosphatase with EF-hand motif, which belongs to PPEF family was partially cloned from rat brain cDNA by employing RT-PCR method. The size of the amplified clone was 1.6kbp. The amplified DNA was subcloned into pGEM-T-Easy vector and the resulting plasmid was maned as pGEM-rPPEF2. The nucleuotide sequence is shared by 88% with that of mouse PPEF-2 cDNA, and the deduced amino acid sequence reveal 92% homology with that of mouse PPEF-2 cDNA. The N-terminal region of the cloned rat brain PPEF contains a putative phosphatase catalytic domain (PP domain) and the C-terminal region contains multiple $Ca^{2+}$ binding sites (EF region). The putative catalytic domin (PP) and the EF-hand motif (EF) regions were subcloned into pGEX4T-1 and were overexpressed in E. coli DH5 as glutathione-S-transferase (GST) fusion proteins. Expression of the desired fusion protein was identified by SDS-PAGE and also by immunoblot analysis using monoclonal antibody against GST. The recombinant proteins were purified by glutathione-agarose chromatography. This report is first to demonstrate the cloning of PPEF family from rat brain tissues. The clone reported here would be invaluable for the investigation of the role of this new type-phosphatase in rat brain.

  • PDF

Scavenging Effects of Hydroxycinnamic acids on Paraquat Induced Hepatotoxicity (II) (Paraquat 유도 간독성에 대한 Hydroxycinnamic acid계 화합물의 독성 경감 효과 (II))

  • 최병기;오은정
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.3
    • /
    • pp.87-93
    • /
    • 1999
  • Antioxidative and scavenging effects were investigated by using two hyaroxycinnamic acids (caffeetannins). such as caffeic acid and chlorogenic acid, on oxidative stress and hepatotoxicity that induced by paraquat. The results are summerized as follows: 1. To assess radical scavenging ability, reduction concentration (IC$\sub$50/) of 1.1 diphenyl-2-dipicrylhydrazine (DPPH) were measured. IC$\sub$50/ values of caffeic acid and chlorogenic acid were 29.7 ${\pm}$0.6 ${\mu}$M and 26.0${\pm}$0.5 ${\mu}$M respectively. Their radical scavenging activities showed concentration-dependent manner. 2. In H$_2$O$_2$-induced hemolysis assay to rat blood, caffeic acid and chlorogenic acid led to different effects, whose hemolysis inhibition ratios at 100 ${\mu}$M were 45.2${\pm}$7.1% and 11.6${\pm}$3.1% respectively 3. In hypoxanthine-xanthine oxidase system producing superoxide anion, caffeic acid and chlorogenic acid showed different inhibitory activities of xanthine oxidase showing 36.8${\pm}$4.3% and 5.4${\pm}$2.3% respectively. 4. To microsomal NADPH dependent cytochrome p-450 reductase in rat liver, paraquat consumed NADPH at a dose-dependent manner from 0 to 1 ${\mu}$M paraquat concentration. Caffeic acid and chlorogenic acid blocked NADPH consumption rates at concentration-dependent manner and inhibition ratios at 100 ${\mu}$M were 67.6% and 59.2% respectively. 5. Administration (30mg/kg, iv) of paraquat to rats caused the marked elevation of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and lipid peroxides (LPO) in the serum and lipid peroxides in the microsome as compared to the control group. Serum GOT, GPT, LDH, ALP and LPO and liver microsomal LPO were reduced significantly by caffeic acid (50mg/kg), chlorogenic acid (25mg/kg) and silymarin (150 mg/kg) as compared to the paraquat group. From these results, caffeic acid and chlorogenic acid exerted their antioxidative agents by removing reactive oxygen substance (ROS) and scavenging effects by inhibiting ROS generating enzyme. As a general, two hydroxyeinnamic acids showed the useful compounds for scavenger and reducer on the paraquat induced hepatotoxicity.

  • PDF

Synthesis and Biological Evaluation of Heterocyclic Ring-substituted Chalcone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B

  • Chen, Zhen-Hua;Sun, Liang-Peng;Zhang, Wei;Shen, Qiang;Gao, Li-Xin;Li, Jia;Piao, Hu-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1505-1508
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is a key factor in negative regulation of the insulin pathway, and is a promising target for the treatment of type-II diabetes, obesity and cancer. Herein, compound ($\mathbf{4}$) was first observed to have moderate inhibitory activity against PTP1B with an $IC_{50}$ value of $13.72{\pm}1.53{\mu}M$. To obtain more potent PTP1B inhibitors, we synthesized a series of chalcone derivatives using compound ($\mathbf{4}$) as the lead compound. Compound $\mathbf{4l}$ ($IC_{50}=3.12{\pm}0.18{\mu}M$) was 4.4-fold more potent than the lead compound $\mathbf{4}$ ($IC_{50}=13.72{\pm}1.53{\mu}M$), and more potent than the positive control, ursolic acid ($IC_{50}=3.40{\pm}0.21{\mu}M$). These results may help to provide suitable drug-like lead compounds for the design of inhibitors of PTP1B as well as other PTPs.

Effect of Gallus gallus var. domesticus (Yeonsan ogolgye) Extracts on Osteoblast Differentiation and Osteoclast Formation (연산 오골계 물 추출물이 조골세포와 파골세포의 활성에 미치는 영향)

  • Yoo, Han-Seok;Chung, Kang-Hyun;Lee, Kwon-Jai;Kim, Dong-Hee;An, Jeung Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.322-329
    • /
    • 2015
  • The effects of water extracts of Gallus gallus var. domesticus (Yeonsan ogolgye, GD) on the activities of osteoblast differentiation and the restraint of osteoclast formation were investigated. The water extract of GD in the human osteoblast "MG-63" cell, was examined in relation to alkaline phosphatase (ALP) activity and alizarin red stains. In order to observe the effects of osteoclasts formation, we analyzed RAW 264.7 cell tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains. The ALP activity of the water extract of hen and cock flesh (3 years) were 133.8% and 129.6%, respectively. The ALP activity of flesh extracts was also higher than that of the skin extracts. Concerning the effects of age, the 3 years old flesh extracts had a higher activity than that of the one year old extracts. However the activity of the 3 years old skin extracts was lower than that of the one year old extracts. For gender conditions, the ALP activity of the hen extract was higher than that of the cock. The degree bone mineralization in the three years old hen flesh exhibited the highest rate, at 124.3%, amongst all the groups. The TRAP activity of the flesh extracts of the three years old cock revealed the lowest rate, at 31.8%, compared to the control. Our results demonstrate that the water extract of GD increases bone mineralization and osteoblast differentiation activity in MG-63 cells and enhances the inhibitory activity of bone-resorption in RAW 264.7 cells. In conclusion, the water extracts of GD seem to be effective in the prevention and treatment of bone related disorders.

Effects of Herbicides on Enzyme Activities in Soil Environment (제초제(除草劑)가 토양환경중(土壤環境中) 효소활성(酵素活性)에 미치는 영향(影響))

  • Kim, Jang-Eok;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.31 no.1
    • /
    • pp.79-85
    • /
    • 1988
  • The effects of herbicides on biochemical processes in soil environment were studied by examining the effects of the chemical structure of each herbicides on soil enzyme activities and pesticides residue revealed when soil treated with urea was incubated at $28{\pm}1^{\circ}C$ for 56 days. The inhibition effects of herbicides on soil enzyme activites in soil decreased in the order of urea group>dinoseb>propanil>diphenyl eter group>acid amide group for urease, and dinoseb>urea group>diphenyl ether group>acid amide group for L-glutaminase and protease, dinoseb>diphenyl ether group>urea group>acid amide group for phosphatase. Herbicides inhibited the activities of soil enzyme in the early stage of treatment but increased the activities of urease, L-glutaminase and protease in the late stage. When herbicides were treated in soil together with urea the degradation of insecticides was accelerated.

  • PDF

Physiological Characteristics and Immunomodulation Activity of Lactobacillus fermentum 450 isolated from Raw Milk (원유에서 분리한 Lactobacillus fermentum 450의 생리적 특성과 면역활성)

  • Han, Noori;Park, Sun-Young;Lim, Sang-Dong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 2015
  • The aim of this study was to investigate the physiological characteristics and immunomodulatory activity of Lactobacillus fermentum 450 isolated from raw milk. L. fermentum 450 showed optimum growth at $40^{\circ}C$ and exhibited immunomodulatory effects on $interleukin-1{\alpha}$, tumor necrosis $factor-{\alpha}$, and nitrous oxide at concentrations of >2,500 pg/mL, >2,000 pg/mL, and $11.55{\pm}2.95{\mu}M$, respectively. Of the 16 antibiotics tested, L. fermentum 450 exhibited the highest sensitivity to rifampicin, followed by penicillin-G, and the highest resistance to kanamycin, followed by neomycin and polymyxin B. The strain showed high acid phosphatase activity and was comparatively tolerant to bile juice and acid. Moreover, the strain displayed high resistance to Salmonella Typhimurium (63.86%). These results demonstrate that L. fermentum 450 has potential for use as a probiotic with immunomodulatory activity.

  • PDF

The Molecular Modeling of Novel Inhibitors of Protein Tyrosine Phosphatase 1B Based on Catechol by MD and MM-GB (PB)/SA Calculations

  • Kocakaya, Safak Ozhan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1769-1776
    • /
    • 2014
  • Binding modes of a series of catechol derivatives such as protein tyrosine phosphatase 1B (PTP1B) inhibitors were identified by molecular modeling techniques. Docking, molecular dynamics simulations and free energy calculations were employed to determine the modes of these new inhibitors. Binding free energies were calculated by involving different energy components using the Molecular Mechanics-Poisson-Boltzmann Surface Area and Generalized Born Surface Area methods. Relatively larger binding energies were obtained for the catechol derivatives compared to one of the PTP1B inhibitors already in use. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicated that the hydroxyl functional groups and biphenyl ring system had favorable interactions with Met258, Tyr46, Gln262 and Phe182 residues of PTP1B. The results of hydrogen bound analysis indicated that catechol derivatives, in addition to hydrogen bonding interactions, Val49, Ile219, Gln266, Asp181 and amino acid residues of PTP1B are responsible for governing the inhibitor potency of the compounds. The information generated from the present study should be useful for the design of more potent PTP1B inhibitors as anti-diabetic agents.

Inactivation of Brain myo-Inositol Monophosphate Phosphatase by Pyridoxal-5'-Phosphate

  • Kim, Dae-Won;Hong, Joung-Woo;Eum, Won-Sik;Choi, Hee-Soon;Choi, Soo-Hyun;Kim, So-Young;Lee, Byung-Ryong;An, Jae-Jin;Lee, Sun-Hwa;Lee, Seung-Ree;Kwon, Oh-Shin;Kwon, Hyeok-Yil;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Choi, Soo-Young
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Myo-inositol monophosphate phosphatase (IMPP) is a key enzyme in the phosphoinositide cell-signaling system. This study found that incubating the IMPP from a porcine brain with pyridoxal-5'-phosphate (PLP) resulted in a time-dependent enzymatic inactivation. Spectral evidence showed that the inactivation proceeds via the formation of a Schiff's base with the amino groups of the enzyme. After the sodium borohydride reduction of the inactivated enzyme, it was observed that 1.8 mol phosphopyridoxyl residues per mole of the enzyme dimer were incorporated. The substrate, myo-inositol-1-phosphate, protected the enzyme against inactivation by PLP. After tryptic digestion of the enzyme modified with PLP, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. Amino acid sequencing of the peptide identified a portion of the PLP-binding site as being the region containing the sequence L-Q-V-S-Q-Q-E-D-I-T-X, where X indicates that phenylthiohydantoin amino acid could not be assigned. However, the result of amino acid composition of the peptide indicated that the missing residue could be designated as a phosphopyridoxyl lysine. This suggests that the catalytic function of IMPP is modulated by the binding of PLP to a specific lysyl residue at or near its substrate-binding site of the protein.

Effects of Insecticides on Enzyme Activities in Soil Environment (살충제(殺蟲劑)가 토양환경중(土壤環境中) 효소활성(酵素活性)에 미치는 영향(影響))

  • Hong, Jong-Uck;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.29 no.3
    • /
    • pp.294-303
    • /
    • 1986
  • The effects of insecticides on biochemical precesses in soil were studied by determining the effects of the chemical structure of each insecticides on enzyme activities, pesticide residue and total number of bacteria revealed when soil treated with urea was incubated at $28{\pm}1^{\circ}$ for 56 days. The inhibition effects of insectides on enzyme activites in soil decreased in the order: dithiophosphoric acid > thiophosphhoric acid > phosphoric acid > carbamate insecticides for urease and phosphatase, thiophosphoric acid > dithiophosphoric acid > phosphoric acid > carbamate insecticides for L-glutaminase and protease. The inhibition effects of organophophorus insecticides on enzyme activities in soil were maintained longer than those of carbamate insecticides. Carbamate insecticides increased the activities of protease and L-glutaminase at 56 days. When insecticides were treated in soil together with urea, the degradation of insecticides was accelerated. By treatment of insecticides, the total number of bacteria was decreased at the early stage of treatment but thereafter increased according to phosphoric acid and carbamate insecticides.

  • PDF