• Title/Summary/Keyword: Acid chloride

Search Result 1,208, Processing Time 0.022 seconds

Radiation Induced-Grafting of Acrylic Acid onto Polyvinyl Chloride Fibers

  • Park, Jae-Ho;Lee, Chong-Kwang
    • Nuclear Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.89-99
    • /
    • 1976
  • The grafting of acrylic acid in aqueous solution to polyvinyl chloride fibers tab been studied in the presence of ferrous, ferric, and cupric salts, The mutual irradiation technique was adopted using a Co-60 source or a Van do Graaff accelerator. The grafting and homopolymerization were suppressed by the cations. Particularly the grafting was suppressed by the cations in the following order of effectiveness : $Cu^{2+}$>$Fe^{2+}$>$Cu^{3+}$. The rate of grafting (in %/hr) was proportional to the 0.76th power of the dose rate over the range from 8.5f $10^3$ rad/hr to $1.4\times10^5$ rad/dr. The apparent activation energy for the grafting was determined to be 6.1 Kcal/mole between $25^{\circ}$ and $75^{\circ}C$ for the mixture of AA-HaO-$(CH_2Cl)_2$, containing Mohr's salt, $4\times10^{-3}$ mole/l. The increase of the grafting was observed when total dose and dose intensity were raised, or when ethylene dichloride as a swelling agent was saturated in the monomer mixture. The grafted polyvinyl chloride fibers showed considerable improvement in moisture regain, heat shrinkage, and melting properties, but tensile properties were not significantly affected by grafting.

  • PDF

Resistance of Cementitious Binders against a Fall in the pH at Corrosion Initiation

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.110-115
    • /
    • 2009
  • At the onset of corrosion of steel in concrete, hydrogen ions usually evolve in the process of electrochemical reaction, thereby decreasing the pH of the pore solution, which can be buffered by cement hydration products, as being representatively illustrated by calcium hydroxide. Hence, a fall in the pH is dependent on properties of cement hydration (i.e. hydration products and degree of hydration). The present study tested acid neutralization capacity (ANC) of cementitious binders of OPC(Ordinary Portland Cement), 30% PFA(Pulverized Fuel Ash), 60% GGBS(Ground Granulated Blast Furnace Slag), 10% SF(Silica Fume) to quantify the resistance of cement matrix to a pH fall. Cement pastes were cast at 0.4 of a free W/C ratio with 1.5% chlorides by weight of binder in cast. Powder samples obtained crushed and ground specimen after 200 days of curing were diluted in still water combined with different levels of 1M nitric acid solution, ranging from 0.5 to 20 mol/kg. Then, the pH of diluted solution was monitored until any further change in the pH did not take place. It was seen that the pH of the diluted solution gradually decreased as the molar amount of nitric acid increased. At some particular values of the pH, however, a decrease in the pH was marginal, which can be expressed in the peak resistances to a pH fall in the ANC curve. The peaks occurred at the variations in the pH, depending on binder type, but commonly at about 12.5 in the pH, indicate a resistance of precipitated calcium hydroxide. The measurement of water soluble chloride at the end of test showed that the amount of free chloride was significantly increased at the pH corresponding to the peaks in the ANC curve, which may reflect the adsorption of hydration products to chlorides.

Effects of Gibberellic Acid and Gibberellin Biosynthesis Retardants on Ethylene Production, Batatasins, and Free Sugars in Dormant Tubers of Chinese Yam

  • Kim Sang-Kuk;Lee Sang-Chul;Kim Kil-Ung;Choo Yeon Sik;Kim Hak Yoon;Lee In-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.300-304
    • /
    • 2004
  • Gibberellic acid did not affect ethylene production, whereas gibberellin biosynthesis inhibitors triggered ethylene production in dormant tubers. Gibberellic acid did not induce sprouting of dormant tubers, however, treatment of gibberellin biosynthesis retardants enhanced sprouting rates. Sprouting rate in ancymidol-treated tubers was highest among gibberellin biosynthesis retardants. Sprouting rate of tubers treated with ancymidol increased to $91.4\%$. Batatasin-III content in $GA_3$ treated tuber was increased in the highest concentration $(30{\mu}g\;I^{-1})$. Tubers treated with mepiquat chloride, Batatasin-I was increased steadily, but contents of Batatasin-III and V showed dramatic decrease at the $ 1,000{\mu}g\;I^{-1})$ concentration. This infers that gibberellin biosynthesis retardants play key roles in promoting breaking dormancy on dormant tubers of Chinese yam.

Hydrolytic Stability of Cured Urea-Melamine-Formaldehyde Resins Depending on Hydrolysis Conditions and Hardener Types

  • Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.672-681
    • /
    • 2015
  • As a part of abating the formaldehyde emission of amino resin-bonded wood-based composite panels, this study was conducted to investigate hydrolytic stability of urea-melamine-formaldehyde (UMF) resin depending on various hydrolysis conditions and hardener types. Commercial UMF resin was cured and ground into a powdered form, and then hydrolyzed with hydrochloric acid. After the acid hydrolysis, the concentration of liberated formaldehyde in the hydrolyzed solution and mass loss of the cured UMF resins were determined to compare their hydrolytic stability. The hydrolysis of cured UMF resin increased with an increase in the acid concentration, time, and temperature and with a decrease in the smaller particle size. An optimum hydrolysis condition for the cured UMF resins was determined as $50^{\circ}C$, 90 minutes, 1.0 M hydrochloric acid and $250{\mu}m$ particle size. Hydrolysis of the UMF resin cured with different hardener types showed different degrees of the hydrolytic stability of cured UMF resins with a descending order of aluminum sulfate, ammonium chloride, and ammonium sulfate. The hydrolytic stability also decreased as the addition level of ammonium chloride increased. These results indicated that hardener types and level also had an impact on the hydrolytic stability of cured UMF resins.

Surface Treatment Technology for Metal Corrosion Layer Focusing on Copper Alloy

  • Yang, Eun-Hee;Han, Won-Sik;Choi, Kwang-Sun;Lee, Young-Hoon;Ham, Chul-Hee;Hong, Tae-Kee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.176-182
    • /
    • 2014
  • Using alkali treatment solution, neutrality treatment solution and acid treatment solution, the surface corrosion layer of copper plates and bronze plates that have been artificially corroded using HCl, $H_2SO_4$ and $HNO_3$ solutions were removed. In the case of alkali treatment solution, only air oxidation in the form of black tenorite and white cuproous chloride remained without being removed. In the case of using a neutrality treatment solution, a anhydrous type layer of reddish brown cupric chloride remained without being removed, together with this black and white corrosion substance. In the case of using an acid treatment solution, this red corrosion substance also remained, but all of the oxide was removed on the surface of the specimen that was treated by alternatively using alkali treatment solution and acid treatment solution. In the case of this treatment solution with the order of alkali-acid, oxidation no longer proceeded only through the distilled water cleaning process after treatment, thereby showing that oxidation from the cleaning solution no longer proceeded.

Leaf Exudates of Vicia faba and their Effects on Botrytis fabae and Some Associated Fungi

  • Migahed, Fatma F.;Nofel, Ashraf M.
    • Mycobiology
    • /
    • v.29 no.4
    • /
    • pp.198-204
    • /
    • 2001
  • Analysis of leaf exudates of Vicia faba using paper chromatography to identify individual amino acids and sugars qualitatively was investigated. The results revealed that the number of identified amino acids detected in the leaf exudates of the susceptible plants was more than those of resistant plants. The results also showed an increase in the number of amino acids exuded by infected leaves, but no marked difference in sugars of infected and non infected plants. Lithium chloride application led to decrease in amino acid and sugar contents. The number of amino acids and sugars was also decreased with leaf age. Botrytis fabae and the selected fungal species(Alternaria alternata, Fusarium oxysporum and Aspergillus niger) were used to show the effect of individual amino acid and sugar on their spore germination. It was observed that all amino acids stimulated the fungal spore germination except serine which inhibited its spore germination. In case of A. alternata, spore germination was stimulated by all amino acids except serine, alanine, glutamic acid, arginine and methionine which caused the inhibition. In case of F. oxysporum, aspartic and glutamic acids inhibited spore germination but the other amino acids stimulated its spore germination. Aspartic acid and phenyl alanine inhibited the spore germination of A. niger. All the identified sugars(galactose, glucose, fructose and rhamnose) stimulated spore germination of all tested fungi.

  • PDF

Phenolic compounds from the leaves of Paulownia Coreana Uyeki (오동나무 잎의 페놀성 화합물)

  • Si, Chuan-Ling;Kim, Jin-Kyu;Kwon, Dong-Joo;Bae, Young-Soo
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • The leaves of Paulownia Coreana Uyeki were collected, extracted with acetone-$H_2O$(7:3, v/v), fractionated with n-hexane, methylene chloride and ethylacetate, and freeze dried to give some dark brown powder. The ethylacetate soluble mixture was chromatographed on a Sephadex LH-20 column using a series of aqueous methanol and ethanol-hexane mixture as eluents. Spectrometric analysis such as NMR and MS including TLC were performed to characterize the structures of the isolated compounds. From the ethylacetate fraction, five flavonoides and three phenolic acids were isolated and determined.

  • PDF

Elimination of Saturated Fatty Acids, Toxic Cyclic nonapeptide and Cyanogen Glycoside Components from Flax Seed Oil

  • Choi, Eun-Mi;Kim, Jeung-Won;Pyo, Mi-Kyung;Jo, Sung-Jun;Han, Byung-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • Flax seed(Linseed, Linum usitatissimum L.) and its oil, a richest source of alpha-linolenic acid(ALA)(${\omega}-3$), contain saturated fatty acids, neurotoxic cyanogen glycosides and immuno-suppressive cyclic-nonapeptides. Present paper describes the development of two chemical processes, Process-A and -B, to remove saturated fatty acids and to destroy cyclic nonapeptides and cyanogen glycosides from flax seed oil. Process-A consists of three major steps, i.e., extraction of fatty acid mixture by alkaline saponification, removal of saturated fatty acid by urea-complexation, and triglyceride reconstruction of unsaturated fatty acid via fatty acyl-chloride activation using oxalyl chloride. Process-B consists of preparation of fatty acid ethyl ester by transesterification, elimination of saturated fatty acid ester by urea-complexation, and reconstruction of triglyceride by interesterification with glycerol-triacetate (triacetin). The destruction of lipophilic cyclic nonapeptide during saponification or transesterification processes could be demonstrated indirectly by the disappearance of antibacterial activity of bacitracin, an analogous cyclic-decapeptide. The cyanogen glycosides were found only in the dregs after hexane extraction, but not in the flax seed oil. The reconstructed triglyceride of flax seed oil, obtained by these two different pathways after elimination of saturated fatty acid and toxic components, showed agreeable properties as edible oil in terms of taste, acid value, iodine and peroxide value, glycerine content, and antioxidant activity.

EFFECT OF BENZALKONIUM CHLORIDE ON DENTIN BONDING WITH NTG-GMA/BPDM AND DSDM SYSTEM (Benzalkonium Chloride가 NTG-GMA/BPDM계 및 DSDM계 상아질접착제의 접착성능에 미치는 영향)

  • Shin, Il;Park, Jin-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.699-720
    • /
    • 1995
  • This study was conducted to evaluate the effect of benzalkonium chloride solution as a wetting agent instead of water on dentin bonding with NTG-GMA/BPDM system (All-bond 2, Bisco.) and DSDM system (Aelitebond, Bisco.). Benzalkonium chloride solution is a chemical disinfectant widely used in medical and dental clinics for preoperative preparation of skin and mucosa due to its strong effect of cationic surface active detergent. Eighty freshly extracted bovine lower incisor were grinded labially to expose flat dentin surface, and then were acid-etched with 10 % phosphoric acid for 15 second, water-rinsed, and dried for 10 second with air syringe. The specimens were randomly divided into 8 groups of 10 teeth. The specimens of control group were remoistured with water and the specimens of experimental groups were remoistured with 0.1 %, 0.5 %, and 1.0 % benzalkonium chloride solution respectively. And then, the Aelitefil composite resin was bonded to the pretreated surface of the specimens by use of All-bond 2 dentin bonding system or Aelitebond dentin bonding system in equal number of the specimens. The bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, then the tensile bond strength was measured, the mode of failure was observed, the fractured dentin surface were examined under scanning electron microscopy, and FT-IR spectroscopy was taken for the purpose of investigating the changes of the dentin surface pretreated with benzal konium chloride solution followed by each primer of the dentin bonding systems. The results were as follows : In the group of bonding with NTG-GMA/BPDM dentin bonding agent(All-bond 2), higher tensile bond strength was only seen in the experimental group remoistured with 0.1 % benzal konium chloride solution than that in water-remoistured control group(p<0.05). In the group of bonding with DSDM dentin bonding agent (Aelitebond), no significant differences were seen between the control and each one of the experimental group(p<0.05). Higher tensile bond strength were seen in NTG-GMAIBPDM dentin bonding agent group than in DSDM dentin bonding agent group regardless of remoistur ization with benzal konium chloride solution. On the examination of failure mode, cohesive and mixed failure were predominantly seen in the group of bonding with NTG-GMAIBPDM dentin bonding agent, while adhesive failure was predominantly seen in the group of bonding with DSDM dentin bonding agent. On SEM examination of fractured surfaces, no differences of findings of primed dentin surface between the groups with and without remoisturization with benzal konium chloride solution. FT-IR spectroscopy taken from the control and the experimental group reve::.led that some higher absorbance derived from the primers binding to dentin surface was seen at the group pretreated with 0.1 % benzal konium chloride solution than at the control group of remoisturizing with water.

  • PDF

Protection of Mercury induced Acute Respiratory Injury by Inhaled Oxidizing Agent (수은에 의한 급성호흡손상시 산화물질의 억제효과)

  • 황태호
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.259-265
    • /
    • 2001
  • Mercury vapor inhalation-induced acute respiratory failure(ARF) has been reported to be fatal. This study was designed to observe the possible mechanism of inhaled mercury vapor poisoning in the respiratory system. Sixty percent of rats(12/20) exposed to mercury vapor were dead within 72 hours of exposure whereas all the rats(20/20) exposed to mercury vapor combined with dithiothreitol(DTT) vapor survived. The histological observation showed that ARF was a direct cause of the death induced by mercury vapor inhalation, which was significantly circumvented by DTT vapor. Cyclic AMP mediated chloride secretion was inhibited by luminal side but not serosal side sulfhydryl blocking agents (Hf$^{2+}$ $\rho$-chloromercuribenzoic acid or $\rho$-chloromercuriphenyl sulfonic acid) in a dose-dependent manner in a primary cultured rat airway monolayer. The inhibitory component of cAMP induced chloride secretion was completely restored by luminal side DTT(0.5mM). these results suggest that the oxidized form(Hg$^{2+}$) of mercury vapor(Hg0) contribute to ARF and subsequent death. The finding is important as it can provide important information regarding emergency manipulation of ARF patients suffering from by mercury vapor poisoning.ing.

  • PDF