• Title/Summary/Keyword: Acid buffer capacity

Search Result 53, Processing Time 0.022 seconds

Modeling of Acid/Base Buffer Capacity of soils (토양의 산/염기 완충능의 모델링)

  • 김건하
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Acid/Base buffer capacity of soil is very important in prediction of contaminant transport for its direct impact on pH change of the system composed of soil-contaminant-water, In this research, diffuse double layer theory as well as two layer electrostatic adsorption model are applied to develop a theoretical model of buffer capacity of soil. Model application procedures are presented as well. Buffer capacity of Georgia kaolinite and Milwhite kaolinite was measured by acid-base titration. Model prediction and experimental results are compared.

  • PDF

On-line Measurement of Buffer Capacity of a Fermentation medium and Estimation of Organic Aicd Production (발효배지의 완충용량의 온라인 측정 및 유기산 생산 추정)

  • Hur, Won;Jung, Yoon-Keun
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.461-467
    • /
    • 1998
  • A fermentation system was supplemented with a device for the measurement of the durations of alkali pump feeding for automatic pH control and an A/D convertor for precise monitoring of pH value by computer. A software program was developed to measure buffer capacities from the pH signal and the pH control signal during fermentation. By measuring the buffer capacity on-line, levels of acetic acid were estimated by a software sensor using pH signal in a fermentation process of E.coli growing in a minimal medium. The measured values of acetic acid showed correlation to those of estimated by the software sensor. Lacitic acid production was also successfully estimated by the values of buffer capacities measured on-line.

  • PDF

THE RELATIONSHIP BETWEEN BUFFER INDEX CURVE AND FERMENTATION QUALITY OF SILAGE

  • Kim, K.H;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.1
    • /
    • pp.67-71
    • /
    • 1991
  • The purpose of this study was to investigate the possibility of using the buffer index curve as a criterion of silage quality evaluation. The buffer index (or buffer capacity, $\beta$) value is the amount of 0.1N NaOH consumed in titrating from the beginning to the end of the chosen pH step. This value equals the slope of the titration curve at the chosen pH range (${\beta}={\Delta}NaOH/{\Delta}pH$). There were two patterns of buffer index curve. Poorly preserved silages had a peak at pH 5.0, whereas with well preserved silages the peaks tended to rise to the pH 3.75 or 4.00. Well preserved, wilted silages with high pH also appeared to have peak values at pH 3.75 or 4.00. There was a high positive correlationship between the concentration of lactic acid and peak value of good quality silage (r = 0.994, p < 0.01). Also a high positive correlationship (r = 0.899, p < 0.001) was found between the sums of concentration of acetic and butyric acids and the peak values of poor quality silages. The results of these experiments verified the value of the buffer index method as a criterion of silage quality evaluation.

Analysis of pH Change and an Automatic pH Control with A New Function:On-Line Estimation of Acetic Acid

  • Jung, Yoon-Keun;Hur, Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.69-72
    • /
    • 1997
  • The pH of microbial culture medium was calculated from equations of equilibrium, meterial balances for ionic components and electro-neutrality theory. Ammonium ion consumption and Acetic acid production are found out to be the major contributors for the alteration of the pH as well as the buffer capacity of the medium. By measuring the buffer capacity on-line, levels of acetic acid were estimated by a software sensor using pH signal in a fermentation process of E.coli growing in a minimal medium. The measured values of acetic acid showed good correlation to those of estimated by the software sensor.

  • PDF

pH Buffer Capacity and Lime Requirement of Korean Acid Soils (한국산성토양의 pH 완충력과 석회소요량 특성)

  • Kim, Yoo-Hak;Yoon, Jung-Hui;Jung, Beung-Gan;Zhang, Yong-Sun;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.378-382
    • /
    • 2004
  • Soil pH is an important indicator for soil reactions and crop growth. pH buffer capacity and lime requirements are necessary to comprehend and manage soils well. The characteristics related with soil pH were analyzed and 5 field trials were conducted to elucidate pH buffer capacity of soil and lime requirements and liming factor for Korean acid soils. Soil minerals were analyzed for the soil of 2 years after treating $CaCO_3$ using X-ray diffraction. The amount of neutralized $H^+$ was regarded as the exchangeable aluminium overcoming ${\Delta}pH$, because pH buffer capacity of soil depended on exchangeable aluminium. Lime requirement was somewhat similar to the KCl exchangeable aluminium and it was also affected by the exchangeable cation by added lime. X-ray diffraction analyses revealed that an aluminium dissociation from Korean acid soils was equilibrated with kaolin minerals and changed into anorthite ($CaAl_2Si_2O_8$) by neutralizing with $CaCO_3$. Neutralizing process was composed of changing process of $Al^{3+}$ into $H^+$ and $Al(OH)_4{^-}$ ionic species and of neutralizing $H^+$ by, the amount of which was lime requirement. The fact that anorthite dissociates an aluminium ion higher than kaolinite does enabled to consider a liming factor (LF) the content of exchangeable cation and ${\Delta}pH$, $LF=1.5+0.2{\times}{\sum} Cations{\times}{\Delta}pH$.

Buffer Capacity of So Horizon Soils of Andisols from Jeju Island: Solubility Effect of Mineral Phases (제주도 Andisols Bo층 토양의 산성화에 대한 완충능력: 광물상 용해도 특성의 영향)

  • 이규호;송윤구;문지원;문희수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.114-121
    • /
    • 2002
  • Buffer capacities for two Bo horizon soils or Andisols developed from different parent materials have been investigated. The titration curves from column leaching experiment show that buffering occurred at pH 4.0 and 6.0. The buffer intensity or soil developed from pyroclastic materials (P-soil) is higher than that from basalts (B-soil). From batch test we have found that proto-imogolite and/or imogolite may control Al solubility as well as $Al(OH) _3$in the moderate acid condition. The buffer intensities ($\beta$) of P-soils were plotted on the theoretical buffering curve of $Al(OH)_3$, while $\beta$ of B-soils approached to that of proto-imogolite, which shows the solubility of short-range-order materials in P-soil control the buffer capacity. Buffering at pH 6.0 is thought to be the result of dissolution of some silicate clays and exchange reactions between $H^{+ }$and base-forming cations. Considering the amount of annual acid precipitation, aluminum solubility of Andisols, and the low BS (Base Saturation percentage), it can be predicted that prolonged acid precipitation will reduce the buffer capacity of soils and lead to soil acidification.

Effects of Artificial Acid Precipitation on Forest Soil Buffer Capacities (인공산성우(人工酸性雨)가 삼림토양(森林土壤)의 완충능(緩衝能)에 미치는 영향(影響))

  • Min, Ell Sik;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.376-387
    • /
    • 1990
  • A research effort has been made to determine soil buffer capacity in forest soils nearby urban and industrialized regions. Buffer capacities of soils from four regions were measured by different pH levels of artificial acid precipitation. The following conclusions have been drawn in response to the overall research objectives. Soil Suffer capacity was the highest in Kangwondo followed by Uisan, Yeochon and Seoul when simulated acid precipitation were treated at the level of pH 3.0-5.7. With the acid precipitation treatment below pH 2.0 level, however, the capacity dropped seriously with no significant differences between the regions. In Kangwondo region soils weathered from granite and limestone showed significant differences in the buffer capacities. Soil collected in Seoul and Ulsean revealed that the capacities tended to increase with the distance from the pollution sources when treated at pH 3.0, 4.5 and 5.7 level of acid precipitation. The major mechanism of soil buffer observed during simulated acid precipitation experiment was canon exchange for Kangwondo forest soils. In Seoul region canon exchange also played an important role in soil buffering under artificial acid precipitation between 3.0 and 5.7 pH levels, yet under pH 2.0 level aluminum and silicate hydrolysis. In Ulsan canon exchange was a msjor determinant for the buffer capacity above pH 4.5 level, between pH 3.0-4.5 aluminum hydrolysis and below pH 3.0 aluminum and silicate hydrolysis. In Yeochon silicate hydrolysis led buffer capacity above pH 4.5 and below pH 4.5 aluminum hydrolysis.

  • PDF

Effect of Acid Buffering Capacity and Soil Component Remediation of Soil Contaminated with Phenanthrene using Electrokinetic-Fenton Process (산 완충능력과 토양 성분이 동전기-펜톤 공정에 의한 phenanthrene 오염토양 정화에 미치는 영향)

  • Kim, Jung Hwan;Na, So Jeong;Park, Joo Yang;Byun, Young Deog
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.129-136
    • /
    • 2013
  • This research was conducted to investigate effects of acid buffering capacity and soil component in treatment of phenanthrene using electrokinetic-Fenton process. In Hadong clay of high acid buffering and low iron oxide content, it was difficult to oxidize phenanthrene due to shortage of iron catalyst and scavenger effect of carbonate minerals. The desorbed phenanthrene conductive to Fenton oxidation was transported toward cathode by electroosmotic flow. However, in Youngdong illitic clay, oxidation of phenanthrene near anode readily occurred compared to Hadong clay due to high iron content and low acid buffering capacity.

화학적 특성이 다른 두 토양에서 EK-Fenton 공정 적용 시에 $H_2O_2$의 거동과 phenanthrene의 처리특성

  • 김정환;이군택;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.128-131
    • /
    • 2003
  • To clarify the effect of soil property on the EK-Fenton remediation of the soil contaminated with phenanthrene, this research had been conducted. In the experiments using EPK kaolinite, the $H_2O$$_2$ stability and effect of phenanthrene treatment improved more than that in the experiments using Hadong clayey soil. The results signify that Fe oxide content and acid buffer capacity significantly affected the fate of $H_2O$$_2$ and phenanthrene during the EK-Fenton process.

  • PDF

Disinfectant Effects of Ecological Familiar Surfactant against Fish Pathogens (환경친화성 계면활성제를 이용한 어병균의 살균효과)

  • 최상원
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.365-368
    • /
    • 2000
  • The antibacterial effect amino acid-copper(II) surfactant on fish pathogens was studied. Fish pathogens of Edwardsiella tarda Vibrio anguillarum Aeromonas hydrophila and Streptococcus sp. were selected cultured in nutrient agar and adjusted at $2{\times}10^5~10^6 CFU/$m\ell$$ in phosphate buffer saline before the addtion of amino acid-copper(II) surfactant with different concentrations. All tested pathogens died within 1 hour with 1 ppm of amino acid-copper(II) surfactant. In comparison with formalin and ET. amino acid-copper (II) surfactnat was more effective in antibacterial capacity.

  • PDF