• Title/Summary/Keyword: Acetobacter sp.

Search Result 57, Processing Time 0.034 seconds

Molecular Identification and Technological Properties of Acetic Acid Bacteria Isolated from Malatya Apricot and Home-Made Fruit Vinegars

  • Buyukduman, Eda;Kirtil, Hatice Ebrar;Metin, Banu
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • Acetic acid bacteria (AAB) are versatile organisms involved in the production of variety of fermented foods, such as vinegar and kombucha, and products of biotechnological relevance, such as bacterial cellulose. In the present study, Malatya apricot, a variety with protected designation of origin (PDO), and vinegar samples produced using various fruits were used to isolate AAB. The 19 AAB isolates obtained were typed using (GTG)5 fingerprinting, and the ones selected were identified by sequencing either 16S rDNA alone or in combination with 16S-23S rRNA internal transcribed spacer region or ligA gene. While all apricot isolates (n = 10) were Gluconobacter cerinus, vinegar isolates (n = 9) were composed of Komagataeibacter saccharivorans, Acetobacter syzygii, and possible two new species of AAB, Komagataeibacter sp., and Gluconobacter sp. (GTG)5 fingerprinting showed the presence of several genotypes of G. cerinus in the apricot samples. Screening for some technologically relevant properties, including thermotolerance, ethanol tolerance, and cellulose production capability, showed that all Komagataeibacter and some Gluconobacter isolates could tolerate the temperature of 35℃, and that vinegar isolates could tolerate up to 8% ethanol. One isolate, Komagataeibacter sp. GUS3 produced bacterial cellulose (1 g/l) and has the potential to be used for cellulose production.

Pretreatment of Cane Molasses for Production of Bacterial Cellulose and Its Physico-Chemical Properties (미생물 셀룰로오스 생산을 위한 당밀의 전처리 및 생산된 셀룰로오스의 물리화학적 특성)

  • Jung, Ho-Il;Jeong, Jin-Ha;Jeon, Young-Dong;Lee, Na-Ri;Park, Ki-Hyun;Kim, Yong-Gyun;Park, Geun-Tae;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1432-1437
    • /
    • 2009
  • The aim of this study is to investigate cane molasses pretreatments for the production of cellulose by Acetobacter sp. V6, which has excellent bacterial cellulose (BC) producing capacity in the shaking culture. Among pretreatments of cane molasses, 1% (w/v) tricalcium phosphate (TP) treatment was more efficient in BC production. The physico-chemical properties of BCs that were produced in static and shaking cultures were also investigated. Although BC had an emulsifying ability, its emulsion stability was low. Water holding capacity (WHC) of BC was high; the WHC of BC produced in static culture was 14 times higher than that of $\alpha$-cellulose. In addition, the viscosity of BC was higher than that of $\alpha$-cellulose. Composition analysis by FT-IR showed no difference in composition between BC and plant cellulose. In the crystallinity analysis by XRD, all BC samples showed crystallinity. All BC samples showed reticulated structures consisting of ultrafine cellulose fibriles. Microfibriles of cellulose from static culture were especially more compact than those of cellulose from shaking culture.

Quality Characteristics and Antioxidant Activity of Immature Citrus unshiu Vinegar (감귤 미숙과 식초의 품질 특성과 항산화 활성)

  • Yi, Mi-Ran;Hwang, Joon-Ho;Oh, You-Sung;Oh, Hyun-Jeong;Lim, Sang-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.250-257
    • /
    • 2014
  • To develop vinegar with immature Citrus unshiu (IC), bacterial strains with high acetic acid-producing capabilities were isolated and identified, after which their quality characteristics, total phenolic and total flavonoid contents, and antioxidant activities were measured. Five bacterial strains were isolated from naturally fermented C. unshiu, and three were identified as Acetobacter fabarum (A. sp. RIC I) and A. pomorum (A. sp. RIC II, V). A. sp. RIC V showed the highest acetic acid-producing capability and was thus chosen as the candidate strain for further acetic fermentation using IC juice. Vinegars made with 30, 35, and 40% IC juices showed acidities of 5.38, 5.38, and 5.32% and fermentation efficiencies of 73, 72, and 70%, respectively. The fermentation periods required to reach greater than 5% acidity were 11, 9, and 9 days for vinegars containing 30, 35, and 40% IC juices, respectively. Fructose and glucose contents of the vinegars increased along with total organic acid contents including acetic acid, with increasing IC juice contents. Total phenolics were 1,546.6 and $230.9{\mu}g$ GAE/mL, whereas total flavonoids were 1,004.7 and $175.1{\mu}g$ QE/mL in vinegars made with IC and mature C. unshiu (MC) juices, respectively. DPPH free radical scavenging activities were 29% and 5%, ABTS radical scavenging activities were 62.0% and 17.9%, SOA scavenging activities were 60.9% and 41.7%, and XO scavenging activities were 32.5% and 5% in vinegars made with IC and MC juices, respectively. Therefore, vinegars made with 35% and 40% IC juices using A. sp. RIC V as the acetic acid fermentation strain showed potent antioxidant activities with greater total phenolic and flavonoid contents, promoting their use as functional vinegars.

Effect of Glasswort (Salicornia herbacea L.) on Microbial Community Variations in the Vinegar-making Process and Vinegar Characteristics

  • Seo, Ha-Na;Jeon, Bo-Young;Yun, A-Ram;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1322-1330
    • /
    • 2010
  • Three types of nuruk were made from rice, wheat, and a rice-glasswort (6:4) mixture. Nuruk, makgeolli, and vinegar were manufactured with rice nuruk (RN), wheat nuruk (WN), and rice-glasswort nuruk (RGN). The variable region of 18S or 16S rDNA amplified with genomic DNA extracted directly from nuruk-, makgeolli-, and vinegar-making cultures was analyzed via temperature gradient gel electrophoresis (TGGE). The sequence of the 18S rDNA variable region extracted from the TGGE gel for nuruk was 99% homologous with Aspergillus sp. and that for the makgeolli-making culture was 99% homologous with Saccharomyces sp. and Saccharomycodes sp. The sequence of the 16S rDNA variable region extracted from TGGE gel for the vinegar-making culture was 98% homologous, primarily with the Acetobacter sp. The eukaryotic and prokaryotic diversities in the nuruk-, makgeolli-, and vinegar-making cultures was not significantly altered by the addition of glasswort. Prokaryotic diversity was higher than eukaryotic diversity in the nuruk, but eukaryotic diversity was higher than prokaryotic diversity in the makgeolli-making culture, on the basis of the TGGE patterns. No 18S rDNA was amplified from the DNA extracted from the vinegar-making culture. The diversity of the microbial community in the process from nuruk to vinegar was slightly affected by the type of raw material utilized for nuruk-making. The saccharifying activity and ethanol productivity of nuruk, polyphenol content in makgeolli, and acetic acid and polyphenol content in the vinegar were increased as a result of the addition of glasswort. In conclusion, the glasswort may be not simply an activator for the growth of microorganisms during the fermentation of nuruk, makgeolli, or vinegar, but also a nutritional supplement that improves the quality of vinegar.

Microbial Modification of Extracellular Polysaccharides

  • Jin Woo Lee
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.69-80
    • /
    • 1999
  • Some trials to alter the structure of extracellular polysaccharides by means of biotransformation and microbial modification have been reported. Seaweed alginate was acetylated by intact and resting cells of Pseudomonas syringae ATCC 19304. Glucose analogs such as 3-O-methyl-D-glucose used as sole carbon sources was directly incorporated into curdlan by agrobacterium sp. ATCC 31749. The 2-amino-2-deoxy-D-glucose (glucosamine)and 2-acetamido-2-deoxy-D-glucose (N-acetylglucosamine) were incorporated into microbial cellulose by Acetobacter xylinum ATCC 10245. The changed monomeric composition in pullulan by Aureobasidium pullulans ATCC 42023 as well as zooglan by Zoogoea ramigera ATCC 25935 was another effect of glucose analogs used a carbon source. There was no effect of glucose analogs found in polysacharide-7 (PS-7) produced by Beijerinckia indica. ATCC 21423.

  • PDF

Studies on the Production of Vinegar from Fig (무화과를 이용한 식초 제조에 관한 연구)

  • 김동한
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 1999
  • Possibility of utilization of fig as a source of vinegar was tested. Alcohol fermentation was conducted by inoculation of Saccharomyces bayanus into fig juice. After 5 days of fermentation at 27oC, fig wine with alcohol content of 13.6%. Then fig vinegar was produced by cultivation of Acetobacter sp. E which was isolated from fig vinegar. Optimum concentration of alcohol, starter content and fermentation temperature for the acid production were 8~9%, 5% and 27~30oC, respectively. More acetic acid was produced by adding 0.5% of yeast extract and 0.01% of Ca pantothenate. Adjustment pH of culture broth with acetic acid and shaking cultivation method were not effective in higher yield of acid production. Addition of sulfite up to 50 ppm did not inhibit for acetic acid fermentation. Addition of 1% bentonite or 1% kakishibu was more effective for the clarification of fig vinegar than any other clarifying agents tested. During aging and racking, acidity, absorbance and tannin content of fig vinegar decreased, while redness and yellowness increased. Aged and racked fig vinegar showed higher sensory score than non aged one in the aspects of color and overall acceptability.

  • PDF

The Production of Vinegar Using Citron(Citrus junos Seib) Juice (유자과즙을 이용한 식초제조)

  • 김용택;서권일;정용진;이용수;심기환
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.3
    • /
    • pp.301-307
    • /
    • 1997
  • To enhance the utility value of citron, vinegars were made of citron juice, their properities were investigated, the results are as following. Optimum bacteria was Acetobacter sp. PA 97 for the citron vinegar fermentation, optimum temperature, initial acidity and alcohol concentration were 3$0^{\circ}C$, 1.5% and 8%, respectively. The lower citron juice was added, the more citric acid was produced, the acidity of sample added sub-nutrition source was higher than that of sample no added. In samples added citron juice of 10, 20 and 30%, and sub-nutrition source, total acidity were 5.42, 5.36 and 5.04%, pure acetic acid yields were 52.69, 45.25 and 35.10%, respectively. Remained alcohol of sample no added sub-nutrition source was more than that of added. In the sensory test, the most suitable concentration of citron juice for vinegar fermentation was 30%.

  • PDF

김치에서 분리한 Lactococcus sp. JC-3 bacteriocin의 특성

  • Kim, Yeong-Hwa;Kim, Mi-Ryeong;Park, Geun-Yeong;Jeon, Hong-Gi;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.623-625
    • /
    • 2000
  • Bacteriocin-producing lactic acid bacteria was isolated from Kimchi using MRS as selective media and Lactobacillus delbruekii subsp. delbruekii as an indicator strain. Strain JC-3 was tentatively identified as Lactococcus latis subsp. lactis through the API test and the bacteriocin produced by JC-3 showed the inhibitory activity against Grampositive pathogens and other lactic acid bacteria. The antimicrobial substance was inactivated by Protamax, Aroase AP-10, Neutrase, R-AMANO and was confirmed to be heating at $100^{\circ}C$. However, it was lost at high pH values showed the highest bacteriocin activity at a culture temperature of $30^{\circ}C$. The bacteriocin was partially purified by ammonium sulfate precipitation, Sep-pak $C_{18}$ cartridge. The apparent molecular mass of the bacteriocin was about 8 Kda, which was determined through the direct detection of bactericidal activity using SDS -PAGE.

  • PDF

A Culture-Independent Comparison of Microbial Communities of Two Maturating Craft Beers Styles

  • Joao Costa;Isabel N. Sierra-Garcia;Angela Cunha
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.404-413
    • /
    • 2022
  • The process of manufacturing craft beer involves a wide variety of spontaneous microorganisms, acting in different stages of the brewing process, that contribute to the distinctive characteristics of each style. The objective of this work was to compare the structure of microbial communities associated with two different craft beer styles (Doppelbock and Märzen lagers), at a late maturation stage, and to identify discriminative, or style-specific taxa. Bacterial and fungal microbial communities were analyzed by Illumina sequencing of 16S rRNA gene of prokaryotes and the ITS 2 spacer of fungi (eukaryotes). Fungal communities in maturating beer were dominated by the yeast Dekkera, and by lactic acid (Lactobacillus and Pediococcus) and acetic acid (Acetobacter) bacteria. The Doppelbock barrels presented more rich and diverse fungal communities. The Märzen barrels were more variable in terms of structure and composition of fungal and bacterial communities, with occurrence of exclusive taxa of fungi (Aspergillus sp.) and bacteria (L. kimchicus). Minority bacterial taxa, differently represented in the microbiome of each barrel, may underlie the variability between barrels and ultimately, the distinctive traits of each style. The composition of the microbial communities indicates that in addition to differences related to upstream stages of the brewing process, the contact with the wood barrels may contribute to the definition of style-specific microbiological traits.

Static Culture Condition for Production of Bacterial Cellulose, Environment-Friendly Functional Material, by Acetic Acid Bacteria (초산균에 의한 환경친화적 기능성소재인 세균 셀룰로오스 생산을 위한 정치배양조건 최적화)

  • Cho, Kwang-Sik;Lee, Sang-Mee;Jeong, Seong-Yun;Park, Geun-Tae;Lee, Hee-Sup;Hwang, Dae-Youn;Jung, Young-Jin;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.895-902
    • /
    • 2014
  • Bacterial cellulose (BC) has played important role as new functional material for food industry and industrial products based on its unique properties. The interest in BC from static cultures has increased steadily in recent years because of its potential for use in medicine and cosmetics. In this study, we investigated culture condition for BC production by Acetobacter sp. F15 in static culture. The strain F15, which was isolated from decayed fruit, was selected on the basis of BC thickness. The optimal medium compositions for BC production were glucose 7%, soytone 12%, $K_2HPO_4$ 0.2%, $NaH_2PO_4{\cdot}_2H_2O$ 0.2%, lactic acid 0.05% and ethanol 0.3%, respectively. The strain F15 was able to produce BC at $26^{\circ}C-36^{\circ}C$ with a maximum at $32^{\circ}C$. BC production occurred at pH 4.5-8 with a maximum at pH 6.5. Under these conditions, a maximum BC thickness of 12.15 mm was achieved after 9 days of cultivation; this value was about 2.3-fold higher than the thickness in basic medium. Scanning electron micrographs showed that BC from the optimal medium was more compact than plant cellulose and was reticulated structure consisting of ultrafine cellulose fibrils. BC from the optimal medium was found to be of cellulose type I, the same as typical native cellulose.