DOI QR코드

DOI QR Code

Pretreatment of Cane Molasses for Production of Bacterial Cellulose and Its Physico-Chemical Properties

미생물 셀룰로오스 생산을 위한 당밀의 전처리 및 생산된 셀룰로오스의 물리화학적 특성

  • Jung, Ho-Il (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Jeong, Jin-Ha (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Jeon, Young-Dong (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Lee, Na-Ri (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Park, Ki-Hyun (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Kim, Yong-Gyun (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Park, Geun-Tae (Research & University-Industry Cooperation, Pusan National University) ;
  • Son, Hong-Joo (Department of Life Science & Environmental Biochemistry, Pusan National University)
  • 정호일 (부산대학교 생명환경화학과) ;
  • 정진하 (부산대학교 생명환경화학과) ;
  • 전영동 (부산대학교 생명환경화학과) ;
  • 이나리 (부산대학교 생명환경화학과) ;
  • 박기현 (부산대학교 생명환경화학과) ;
  • 김용균 (부산대학교 생명환경화학과) ;
  • 박근태 (부산대학교 산학협력단) ;
  • 손홍주 (부산대학교 생명환경화학과)
  • Published : 2009.10.30

Abstract

The aim of this study is to investigate cane molasses pretreatments for the production of cellulose by Acetobacter sp. V6, which has excellent bacterial cellulose (BC) producing capacity in the shaking culture. Among pretreatments of cane molasses, 1% (w/v) tricalcium phosphate (TP) treatment was more efficient in BC production. The physico-chemical properties of BCs that were produced in static and shaking cultures were also investigated. Although BC had an emulsifying ability, its emulsion stability was low. Water holding capacity (WHC) of BC was high; the WHC of BC produced in static culture was 14 times higher than that of $\alpha$-cellulose. In addition, the viscosity of BC was higher than that of $\alpha$-cellulose. Composition analysis by FT-IR showed no difference in composition between BC and plant cellulose. In the crystallinity analysis by XRD, all BC samples showed crystallinity. All BC samples showed reticulated structures consisting of ultrafine cellulose fibriles. Microfibriles of cellulose from static culture were especially more compact than those of cellulose from shaking culture.

BC 합성능이 우수하며, 진탕배양에서도 BC를 생산할 수 있는 능력이 있음이 확인된 Aectobacter sp. V6로부터 BC 생산을 위한 당밀 전처리 조건을 검토하였으며, 생산된 BC의 물리화학적 특성을 검토하였다. 당밀을 배지성분으로 사용하기 위해 전처리를 실시한 결과, 1%의 TP가 BC 생산에 가장 효율적이었다. 전처리한 당밀배지를 이용하여 정치 및 진탕배양에서 생산된 BC의 물리화학적 특성을 조사한 결과, 모든 BC는 유화능이 있었으나 유화 안정능은 낮았다. 또한 모든 BC에서 높은 수분 보유능이 나타났으며, 특히 정치배양에서 생산된 BC는 $\alpha$-cellulose보다 14배 이상 높았다. BC의 점도는 모두 $\alpha$-cellulose보다 높았으며, 점도계 회전속도의 증가에 따라 급격히 감소하였다. FT-IR을 통한 조성 분석에서 BC는 식물성 셀룰로 오스와 차이가 없었으며, XRD를 통한 결정성 분석에서는 모든 BC가 결정성을 나타내었다. BC의 미세구조를 조사한 결과, 모든 BC가 미세망상구조로 이루어져 있었는데, 이로 인해 BC는 식물성 셀룰로오스와는 달리 독특한 물성을 가지는 것으로 판단되었다. 또한 정치배양에서 생산된 BC는 진탕배양에서 생산된 것보다 셀룰로오스 미세섬유가 조밀하게 얽혀있음을 알 수 있었다.

Keywords

References

  1. American Association of Cereal Chemists (AACC). 1981. Method for water hydration capacity of plant protein material. Cereal Foods World 26, 291-293
  2. Bae, S. O. and M. Shoda. 2004. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol. Prog. 20, 1366-1371 https://doi.org/10.1021/bp0498490
  3. Bae, S. O. and M. Shoda. 2005. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermenter. Appl. Microbiol. Biotechnol. 67, 45-51 https://doi.org/10.1007/s00253-004-1723-2
  4. Delmer, D. P. and Y Amor. 1995. Cellulose biosynthesis. Plant Cell 7, 987-1000 https://doi.org/10.1105/tpc.7.7.987
  5. Dubois, M., K. A Gilles, J. K. Hamilton, P. A Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356 https://doi.org/10.1021/ac60111a017
  6. Dudman, W. F. 1959. Cellulose production by Acetobacter acetigenum and other Acetobacter spp. J. Gen. Microbiol. 21, 312-326 https://doi.org/10.1099/00221287-21-2-
  7. Ebihara, K. and S. Kiriyama. 1990. Physico-chemical property and physiological function of dietary fiber. Nippon Shokuhin Kogyo Gakkaishi 37, 916-933 https://doi.org/10.3136/nskkk1962.37.11_916
  8. Embuscado, M. E., J. N. BeMiller, and J. S. Marks. 1996. Isolation and partial characterization of cellulose produced by Acetobacter xylinum. Food Hydrocolloids 10, 75-82 https://doi.org/10.1016/S0268-005X(96)80057-9
  9. Focher, B., M. T. Palma, M. Canetti, G. Torri, C. Cosentino, and G. Gastaldi. 2001. Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Industrial Crops and Products 13, 193-208 https://doi.org/10.1016/S0926-6690(00)00077-7
  10. Kang, J. Hand S. C. Park. 2007. Production and characteristics of cellulose from Saprolegnia ferax. J. of Korea TAPPI 39, 77-83
  11. Keshk, S. M. AS., T. M. A Razek, and K. Sameshima. 2006. Bacterial cellulose production from beet molasses. African Journal of Biotechnol. 5, 1519-1523
  12. Klemm, D., D. Schumann, U. Udhard, and S. Marsch. 2001. Bacterial synthesized cellulose - Artficial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561-1603 https://doi.org/10.1016/S0079-6700(01)00021-1
  13. Kotzamanidis, C. H, T. Roukas, and G. Skaracis. 2002. Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J. Microbiol. Biotech. 18, 441-448 https://doi.org/10.1023/A:1015523126741
  14. Lee, S. Y, J. R. Jeon, and Y K. Yang. 2005. Characteristics of the physical function of biocellulose from Acetobacter xylinum. Food Eng. Prog. 9, 182-191
  15. Okiyama, A, H. Shirae, H. Kano, and S. Yamanaka. 1992. Bacterial cellulose 1. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocolloids 6, 471-477 https://doi.org/10.1016/S0268-005X(09)80032-5
  16. Ougiya, H., K. Watanabe, Y. Morinaga, and F. Yoshinaga. 1997. Emulsion-stabilizing effect of bacterial cellulose. Biosci. Biotech. Biochem. 61, 1541-1545 https://doi.org/10.1271/bbb.61.1541
  17. Paek, H. S., J. S. Park, S. M. Jo, W. S. Lee, and K. J. Kim. 1993. The effects of preparation conditions of celluose/NMethylmorpholine-N-Oxide solutions on physical properties of fibers. J. Korean Fiber Soc. 30, 569
  18. Ross, P., R. Mayer, and M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 35-58
  19. Roukas, T. 1998. Pretreatment of beet molasses to increase pullulan production. Process Biochem. 33, 805-810 https://doi.org/10.1016/S0032-9592(98)00048-X
  20. Sakran, M. A 1996. Mechanism of cellulose polymer reactions with some cation-exchanged montmorillonite catalysts. J. Radioanal. Nucl. Chem. 213, 87-98 https://doi.org/10.1007/BF02165241
  21. Schneider, A. L. S., R. Merkle, M. F. Carvalho-Jonas, R. Jonas, and S. A. Furlan. 2001. Oxygen transfer on $\beta$-D-galactosidase production by Kluyveromyces marxianus using sugar cane molasses as carbon source. Biotechnol. Lett. 23, 547-550 https://doi.org/10.1023/A:1010338904870
  22. Son, H J., O. M. Lee, Y. G. Kim, and S. J. Lee. 2000. Isolation identification of cellulose producing bacteria. Kor. J. Appl. Microbiol. Biotechnol. 28, 134-138
  23. Son, H J., O. M. Lee, Y. G. Kim, Y. K. Park, and S. J. Lee. 2000. Characteristics of cellulose production by Acetobacter sp. A9 in static culture. Kor. J. Biotechnol. Bioeng. 15, 573-577
  24. Sutherland, T. W. 1998. Novel and estabilished applications of microbial polysaccharides. TIBTECH 16, 41-46 https://doi.org/10.1016/S0167-7799(97)01139-6
  25. U.S. Sugar Corp. 2003. Typical composition of U. S. sugar's heavy mill run cane molasses
  26. Yamanaka, S., K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y Nishi, and M. Uryu. 1989. The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mat. Sci. 24, 3141-3145 https://doi.org/10.1007/BF01139032
  27. Yoshino, T., T. Asakura, and K. Toda. 1996. Cellulose production by Acetobacter pasteurianus on silicone membrane. J. Ferment. Bioeng. 81, 32-36 https://doi.org/10.1016/0922-338X(96)83116-3

Cited by

  1. Enhancement of the saccharification yields of Ulva pertusa kjellmann and rape stems by the high-pressure steam pretreatment process vol.18, pp.4, 2013, https://doi.org/10.1007/s12257-013-0033-x