DOI QR코드

DOI QR Code

Inhibitory Effect of LPS-Induced Plasminogen Activator Inhibitor-1 by Ascofuranone in Rat Kidney Fibroblast Cells

Ascofuranone에 의한 plasminogen activator inhibitor-1 발현저해 효과

  • Chang, Young-Chae (Department of Pathology, Catholic University of Daegu School of Medicine)
  • 장영채 (대구가톨릭대학교 의과대학 병리학교실)
  • Published : 2009.10.30

Abstract

Renal fibrosis is a final common manifestation of every type of chronic kidney disease. Plasminogen activator inhibitor (PAI)-1 is induced by lipopolysaccharide (LPS) and is known to play an essential role in the progress of renal fibrosis. In this paper, we found that an isoprenoid antibiotic, ascofuranone (AF), suppresses expression of profibrotic factors, PAI-1 and promoter activity of PAI-1 induced by LPS in rat kidney fibroblast cells. We therefore investigated signaling pathway mediated inhibitory effects of LPS-induced PAI-1 by AF in rNRK-49F cells. PAI-1 expression is suppressed by treatment with kinase inhibitors for MEK-1/2, as it isin inhibition of PAI-1 expression by AF, and AF inhibits phosphorylation of ERK-1/2. This study suggest that AF suppresses expression of PAI-1 through the inhibition of an ERK-1/2-dependent signal transduction pathway. The data indicates the possibility that AF can be used to prevent the development and progression of renal fibrosis.

이 연구는 신장섬유아 세포를 이용하여 LPS에 의해 유도된 신장섬유화 표적유전자인 plasminogen activator inhibitor (PAI-1) 발현과 Ascofuranone (AF)에 의한 신장섬유화 저해효과를 연구하였다. 이 연구를 통해 LPS가 PAI-1의 발현을 농도 및 시간 의존적으로 증가시켜 LPS가 신장섬유화 유도물질임을 확인 할 수 있었다. 또한 LPS로 유도된 PAI-1 mRNA 및 단백질 발현 레벨이 AF에 의해 저해되었으며, 신장섬유화의 또 다른 대표유전자인 fibronectin의 단백질 발현도 AF에 의해 억제되어 AF가 신장섬유화를 저해하는 사실을 확인할 수 있었다. 그리고 AF에 대한 PAI-1 프로모터 활성을 조사하기 위하여 p800-PAI-1-luc을 신장섬유아 세포에 형질전환 시킨 결과, AF가 PAI-1의 전사 활성 조절을 통해 발현을 억제한다는 것을 확인하였다. ERK-1/2의 상위에 존재하는 MEK inhibitor를 처리하여 PAI-1의 발현을 확인한 결과에서도 AF를 처리한 경우와 동일하게 PAI-1 발현이 저해되어 LPS로 유도된 PAI-1의 발현이 ERK-1/2에 의해 조절됨을 알 수 있었다. 또한 LPS로 유도된 ERK-1/2의 인산화가 AF 농도의존적으로 저해된 결과는, AF가 ERK-1/2의 활성저해를 통하여 PAI-1 발현을 조절한다는 사실을 확인 할 수 있었다. 따라서 이러한 연구결과 AF가 신장섬유화를 저해하는 유력한 후보물질로서의 가능성을 제시하였다.

Keywords

References

  1. Ahn, J. D., R. Morishita, Y. Kaneda, H. J. Kim, Y. D. Kim, H. J. Lee, K. U. Lee, J. Y. Park, Y. H. Kim, K. K. Park, Y. C. Chang, K. H. Yoon, H. S. Kwon, K. G. Park, and I. K. Lee. 2004. Transcription factor decoy for AP-1 reduces mesangial cell proliferation and extracellular matrix production in vitro and in vivo. Gene. Ther. 11, 916-923 https://doi.org/10.1038/sj.gt.3302236
  2. Cho, H. J., J. H. Kang, T. Kim, K. K. Park, C. H. Kim, I. S. Lee, K. S. Min, J. Magae, H. Nakajima, Y. S. Bae, and Y. C. Chang. 2009. Suppression of PAI-1 expression through inhibition of the EGFR-mediated signaling cascade in rat kidney fibroblast by ascofuranone. J. Cell Biochem. 107, 335-344 https://doi.org/10.1002/jcb.22130
  3. Cho, H. J., J. H. Kang, J. Y. Kwak T. S. Lee, I. S. Lee, N. G. Park, H Nakajima, J. Magae, and Y. C. Chang. 2007. Ascofuranone suppresses PMA-mediated matrix metalloproteinase-9 gene activation through the Ras/Raf/MEK/ERK- and ApI-dependent mechanisms. Carcinogenesis 28, 1104-1110 https://doi.org/10.1093/carcin/bgl217
  4. Derynck, R. and Y. E. Zhang. 2003. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425, 577-584 https://doi.org/10.1038/nature02006
  5. Fang, J., C. Xia, Z. Cao, J. Z. Zheng, E. Reed, and B. H. Jiang. 2005. Apigenin inhibits VEGF and HIF-1 expression via PI3K/ AKT/p7OS6K1 and HDM2/p53 pathways. FASEB J. 19, 342-353 https://doi.org/10.1096/fj.04-2175com
  6. Fogo, A. B. 2003. Renal fibrosis: not just PAI-1 in the sky. J. Clin. Invest. 112, 326-328 https://doi.org/10.1172/JCI19375
  7. Garcia-Lazaro, J. F., F. Thieringer, S. Luth, P. Czochra, E. Meyer, I. B. Renteria, P. R. Galle, A W. Lohse, J. Herkel, and S. Kanzler. 2005. Hepatic over-expression of TGF-beta1 promotes LPS-induced inflammatory cytokine secretion by liver cells and endotoxemic shock. Immunol. Lett. 101, 217-222 https://doi.org/10.1016/j.imlet.2005.06.003
  8. Higuchi, C., Y. Tanihata, H. Nishimura, T. Naito, and T. Sanaka. 2005. Effects of glucose and plasminogen activator inhibitor-Ion collagen metabolism in the peritoneum. Ther. Apher. Dial. 9, 173-181 https://doi.org/10.1111/j.1774-9987.2005.00232.x
  9. Hong, S., K. K. Park, J. Magae, K. Ando, T. S. Lee, T. K. Kwon, J. Y. Kwak, C. H. Kim, and Y. C. Chang. 2005. Ascochlorin inhibits matrix metalloproteinase-9 expression by suppressing activator protein-I-mediated gene expression through the ERK1/2 signaling pathway: inhibitory effects of ascochlorin on the invasion of renal carcinoma cells. J. BioI. Chem. 280, 25202-25209 https://doi.org/10.1074/jbc.M413985200
  10. Hosokawa, T., M. Sawada, K. Ando, and G. Tamura. 1981. Alteration of cholesterol metabolism by 4-O-methylasco-chlorin in rats. Lipids 16, 433-438 https://doi.org/10.1007/BF02535011
  11. Imail, K, A. Takeshita and S. Hanazawa. 2000. Transforming growth factor-beta inhibits lipopolysaccharide-stimulated expression of inflammatory cytokines in mouse macrophages through downregulation of activation protein 1 and CD14 receptor expression. Infect. Immun. 68, 2418-2423 https://doi.org/10.1128/IAI.68.5.2418-2423.2000
  12. Kutz, S. M., C. E. Higgins, R. Samarakoon, S. P. Higgins, R. R. Allen, 1. Qi, and P. J. Higgins. 2006. TGF-beta 1-induced P AI-1 expression is E box/USF-dependent and requires EGFR signaling. Exp. Cell Res. 312, 1093-1105 https://doi.org/10.1016/j.yexcr.2005.12.027
  13. Lam, S., R. N. van der Geest, N. A. Verhagen, M. R. Daha, and C. van Kooten. 2004. Secretion of collagen type IV by human renal fibroblasts is increased by high glucose via a TGF-beta-independent pathway. Nephrol. Dial. Transplant 19, 1694-1701 https://doi.org/10.1093/ndt/gfh235
  14. Leyland, H., J. Gentry, M. J. Arthur, and R. C. Benyon. 1996. The plasminogen-activating system in hepatic stellate cells. Hepatology 24, 1172-1178 https://doi.org/10.1002/hep.510240532
  15. Li, G., Q. Xie, Y. Shi, D. Li, M. Zhang, S. Jiang, H. Zhou, H. Lu, and Y. Jin. 2006. Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J. Gene Med. 8, 889-900 https://doi.org/10.1002/jgm.894
  16. Magae, J., J. Hayasaki, Y. Matsuda, M. Hotta, T. Hosokawa, S. Suzuki, K. Nagai, K. Ando, and G. Tamura. 1988. Antitumor and antimetastatic activity of an antibiotic, ascofuranone, and activation of phagocytes. J. Antibiot. (Tokyo) 41, 959-965 https://doi.org/10.7164/antibiotics.41.959
  17. Magae, J., T. Hosokawa, K. Ando, K. Nagai, and G. Tamura. 1982. Antitumor protective property of an isoprenoid antibiotic, ascofuranone. J. Antibiot. (Tokyo) 35, 1547-1552 https://doi.org/10.1016/0166-6851(96)02665-5
  18. Sung, M. J., M. Davaatseren, W. Kim, S. K. Park, S. H. Kim, H. J. Hur, M. S. Kim, Y. S. Kim, and D. Y. Kwon. 2009. Vitisin A suppresses LPS-induced NO production by inhibiting ERK p38, and NF-kappaB activation in RAW 264.7 cells. Int. Immunopharmacol. 9, 319-323 https://doi.org/10.1016/j.intimp.2008.12.005
  19. Nawata, Y., K Ando, G. Tamura, K. Arima, and Y. litaka. 1969. The molecular structure of ascochlorin. J. Antibiot. (Tokyo) 22, 511-512 https://doi.org/10.7164/antibiotics.22.511
  20. Ohba, K, Y. Miyata, S. Kanda, S. Koga, T. Hayashi, and H. Kanetake. 2005. Expression of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and plasminogen activator inhibitors in patients with renal cell carcinoma: correlation with tumor associated macrophage and prognosis. J. Urol. 174, 461-465 https://doi.org/10.1097/01.ju.0000165150.46006.92
  21. Perrella, M. A, C. M. Hsieh, W. S. Lee, S. Shieh, J. C. Tsai, C. Patterson, C. J. Lowenstein, N. C. Long, E. Haber, S. Shore, and M. E. Lee. 1996. Arrest of endotoxin-induced hypotension by transforming growth factor beta1. Proc. Natl. A cad. Sci. USA 93, 2054-2059 https://doi.org/10.1073/pnas.93.5.2054
  22. Ricardo, S. D., H. van Goor, and A. A. Eddy. 2008. Macrophage diversity in renal injury and repair. J. Clin. Invest. 118, 3522-3530 https://doi.org/10.1172/JCI36150
  23. Sasaki, H, T. Hosokawa, M. Sawada, and K. Ando. 1973. Isolation and structure of ascofuranone and ascofranoC antibiotics with hypolipidemic activity. J. Antibiot. (Tokyo) 26, 676-680 https://doi.org/10.7164/antibiotics.26.676
  24. Sawdey, M. S. and D. J. Loskutoff. 1991. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J. Clin. Invest. 88, 1346-1353 https://doi.org/10.1172/JCI115440
  25. Wickert, L., N. Chatain, K. Kruschinsky, and A. M. Gressner. 2007. Glucocorticoids activate TGF-beta induced PAI-1 and CTGF expression in rat hepatocytes. Comp. Hepatol. 6, 5 https://doi.org/10.1186/1476-5926-6-5
  26. Yamaguchi, N., S. Jesmin, S. Zaedi, N. Shimojo, S. Maeda, S. Gando, A. Koyama, and T. Miyauchi. 2006. Time-dependent expression of renal vaso-regulatory molecules in LPS-induced endotoxemia in rat. Peptides 27, 2258-2270 https://doi.org/10.1016/j.peptides.2006.03.025
  27. Yamamoto, K, T. Shimokawa, H. Yi, K. Isobe, T. Kojima, D. J. Loskutoff, and H. Saito. 2002. Aging accelerates endotoxin-induced thrombosis : increased responses of plasminogen activator inhibitor-1 and lipopolysaccharide signaling with aging. Am. J. Pathol. 161, 1805-1814 https://doi.org/10.1016/S0002-9440(10)64457-4
  28. Yang, Y. L., S. Y. Chang, H. C. Teng, Y. S. Liu, T. C. Lee, L. Y. Chuang, J. Y. Guh, F. R. Chang, T. N. Liao, J. S. Huang, J. H. Yeh, W. T. Chang, M. Y. Hung, C. J. Wang, T. A. Chiang, C. Y. Hung, and T. J. Hung. 2008. Safflower extract: a novel renal fibrosis antagonist that functions by suppressing autocrine TGF-beta. J. Cell Biochem. 104, 908-919 https://doi.org/10.1002/jcb.21676