• Title/Summary/Keyword: Acetate buffer

Search Result 207, Processing Time 0.064 seconds

Evaluation of Available Soil Silicon Extracting Procedures for Oriental Melon (참외 시설재배 토양에 대한 유효규산 추출방법 비교)

  • Cho, Hyun-Jong;Choe, Hui-Yeol;Lee, Yong-Woo;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.251-258
    • /
    • 2004
  • Soil testing for silicon (Si) in the upland soils has not been sufficiently investigated. The objective of this study was to identify a suitable Si extraction method for upland soils of oriental melon (Cucumis melo L.). Thirty-eight surface soil samples and matured leaf samples were collected from plastic film houses in Sungju, Gyeongbuk province. In the laboratory, six different methods were used for extracting Si from the soils. The methods included 0.5 N HCl extraction, 1 N sodium acetate buffer (PH 4.0) extraction, citric acid 1% extraction, water extraction, Tiis buffer pH 7.0 extraction, and extraction after incubation with water for 1 week. The concentration of dissolved Si in soil extracts from all methods was determined colorimetrically. With 1 N sodium acetate buffer extraction, as the available soil Si increased, the concentration ofSi in oriental melon leaf increased until around $14g\;SiO_2\;kg^{-1}$ was reached in the form of a saturation curve. Also, among the methods studied, extraction with 1 N sodium acetate buffer was the only method provided a significant linear correlation with oriental melon leaf Si content in the range of extractable soil Si lower than the level which inducing Si saturation in oriental melon leaf. These results indicate that 1 N sodium acetate buffer extraction procedure is the best soil Si test method for upland soils of oriental melon. This sodium acetate buffer extraction procedure is rapid and quite well acquainted with scientists and farmers, since the method has been used for routine paddy soil testing.

Heterogeneity of Mammalian Plasma Albumin (포유류 혈장알부민의 이질성)

  • Kim, Sang-Yeop;Park, Sang-Yoon
    • The Korean Journal of Zoology
    • /
    • v.25 no.3
    • /
    • pp.115-122
    • /
    • 1982
  • Plasma albumin was purified from the fresh bovine blood using a minor modification of the polyethyleneglycol and ethanol procedure. The resulting protein solution was tested for its purity by both electrophoretic and immunochemical methods and found to contain only the albumin molecules. Each of the four thiol reagents, maleate, iodoacetate, iodoacetamide and glutathione, was incubated with the purified plasma albumin. The electrophoresis on cellulose acetate of those complexes in various buffers with different component and pH demonstrated that the albumin-glutathione complex was separated into two zones in all buffers used except the barbital and sodium acetate buffers, that the complexes of albumin-iodoacetate and albumin-iosoacetamide also into two zones only in pH 4.8 citrate buffer and in pH 4.8 succinate buffer and that the new zone had more positive net charge compared to the native protein in any case. These results might suggest a possibility that the electrophoretic albumin fraction is composed of at least two molecular species with different conformation.

  • PDF

Transfer of RNA from Methylmercury-agarose Gel to Nitrocellulose Membrane (메칠머큐리젤에 분리된 리보핵산의 니트로셀루로스막으로 이동)

  • 안정선
    • Journal of Plant Biology
    • /
    • v.30 no.2
    • /
    • pp.109-116
    • /
    • 1987
  • Effects of staining, buffer washing and denaturing agents on the transferrability of RNA fractionated on a methylmercury hydroxide-agarose gel to a nitrocellulose membrane were studied. Ethidium bromide staining and ammonium acetate buffer washing inhibited RNA transfer, while 3% HCHO and 0.5 M NaOH treatments stimulated transfer which was negated in the ammonium acetate buffer. Accordingly, maintenance of primary structure of RNA was proved to be essential for transferring RNA from the methylmercury hydroxideagarose gel to the nitrocellulose membrane.

  • PDF

The Interaction of HIV-1 Inhibitor 3,3',3",3‴-Ethylenetetrakis-4-Hydroxycoumarin with Bovine Serum Albumin at Different pH

  • Dong, Sheying;Yu, Zhuqing;Li, Zhiqin;Huang, Tinglin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2063-2069
    • /
    • 2011
  • We studied the interaction of 3,3',3'',3'''-ethylenetetrakis-4-hydroxycoumarin (EHC) with bovine serum albumin (BSA) in acetate buffer and phosphate buffer with different pH values by UV-vis absorption spectrometry and fluorescence spectrometry respectively. It was found that the pH values of the buffer solutions had an effect on the interaction process. In acetate buffer of pH 4.70, the carbonyl groups in EHC bound to the amino groups in BSA by means of hydrogen bond and van der Waals force, which made the extent of peptide chain in BSA changed. By contrast, in phosphate buffer of pH 7.40, hydrophobic force played a major role in the interaction between EHC and BSA, while the hydrogen bond and van der Waals force were also involved in the interaction. The results of spectrometry indicated that BSA could enhance the fluorescence intensity of EHC by forming a 1:1 EHC-BSA fluorescent complex through static mechanism at pH 4.70 and 7.40 respectively. Furthermore, EHC bound on site 1 in BSA.

Suppression of Pyrite Oxidation by Formation of Iron Hydroxide and Fe(III)-silicate Complex under Highly Oxidizing Condition

  • Lee, Jin-Soo;Chon, Chul-Min;Kim, Jae-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.297-302
    • /
    • 2011
  • Acid drainage generated by pyrite oxidation has caused the acidification of soil and surface water, the heavy metal contamination and the corrosion of structures in abandoned mine and construction sites. The applicability of Na-acetate (Na-OAc) buffer and/or Na-silicate solution was tested for suppressing pyrite oxidation by reacting pyrite containing rock and treating solution and by analyzing solution chemistry after the reaction. A finely ground Mesozoic andesite containing 10.99% of pyrite and four types of reacting solutions were used in the applicability test: 1) $H_2O_2$, 2) $H_2O_2$ and Na-silicate, 3) $H_2O_2$ and 0.01M Na-OAc buffer at pH 6.0, and 4) $H_2O_2$, Na-silicate and 0.01M Na-OAc buffer at pH 6.0. The pH in the solution after the reaction with the andesite sample and the solutions was decreased with increasing the initial $H_2O_2$ concentration but the concentrations of Fe and $SO_4^{2-}$ were increased 10 - 20 times. However, the pH of the solution after the reaction increased and the concentrations of Fe and $SO_4^{2-}$ decreased in the presence of Na-acetate buffer and with increasing Na-silicate concentration at the same $H_2O_2$ concentration. The solution chemistry indicates that Na-OAc buffer and Na-silicate suppress the oxidation of pyrite due to the formation of Fe-hydroxide and Fe-silicate complex and their coating on the pyrite surface. The effect of Na-OAc buffer and Na-silicate on reduction of pyrite oxidation was also confirmed with the surface examination of pyrite using scanning electron microscopy (SEM). The result of this study implies that the treatment of pyrite containing material with the Na-OAc buffer and Na-silicate solution reduces the generation of acid drainage.

Evaluation of Field Application and Optimum Operational Condition for Heavy Metals Analysis Using Environment-Friendly Bismuth Film Electrode (친환경 비스무스 필름 전극을 이용한 중금속 분석 최적조건 도출 및 현장 적용성 평가)

  • Kim, So-Youn;Yang, Yong-Woon;Jeon, Sook-Lye
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • This study was conducted to establish the optimal electrolyte and bismuth concentrations using bismuth film electrode in laboratory and to confirm the possibilities of using this operational condition for heavy metals monitoring in field. In lab test, heavy metal measurement was not accurate more than 600 ppb when heavy metal (Pb, Cd, Zn) range 100~1,000 ppb was measured with bismuth 2,000 ppb. So, bismuth and heavy metal was reacted about 1:1 with ASV method. In electrolyte test, 0.1 M acetate buffer (pH 4.5), 0.1 M chloroacetate buffer (pH 2.0), 0.1 M HCl (pH 2.0), 0.1 M $HNO_3$ (pH 2.0) was tested. As a results, 0.1 M acetate buffer was most suitable in ASV measurement with bismuth film electrode. In field application, Pb, Cd and Zn was measured respectively 36~45 ppb, 84~91 ppb, 90~98 ppb when heavy metal (Pb, Cd, Zn) 100 ppb was spiked in field sample. These results were identified of matrix effect in field sample, So relationship between heavy metal measurement and matrix effects will be studied.

Validation of analysis of urinary fluoride by ion selective electrode method (이온선택전극법에 의한 소변 중 불소 이온 분석법 검증)

  • Lee, Mi-Young;Yoo, Kye-Mook
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.333-338
    • /
    • 2014
  • A simple and sensitive analytical method for fluoride in urine by ion selective electrode (ISE) method was presented. Traditional buffer for fluoride determination using ISE is acetate-based one. Researchers have pointed out some drawbacks of the buffer for fluoride ISE analysis, and some other buffers including citrate-ammonium buffer and MES buffer have been studied for accurate determination of fluoride in urine here. These buffers provided promising results in environmental field, and this author focused on overcoming the interference of co-existing aluminium. The results show that MES-CyDTA buffer gave the best recovery with accuracy of 95-97.5% and precision of 1.9-7.9% for reference sample of 1.8-7.8 mg/L fluoride in urine, with smaller amount of samples and shorter analysis time compared with the traditional method which used acetate buffer. The method was applied to field samples, and which showed urinary of $0.98{\pm}0.38mg/g$ creatinine for workers in electric cable manufacturing factory (n=15) and $0.59{\pm}0.30mg/g$ creatinine for non-exposed workers (n=12).

Effect of Na-Acetate, Na-Malate and K-Sorbate on the pH, Acidity and Sourness during Kimchi Fermentation (Na-Acetate 및 Na-Malate와 K-Sorbate가 김치발효중 pH, 산도 및 산미에 미치는 효과)

  • Park, Kyoung-Ja;Woo, Soon-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.40-44
    • /
    • 1988
  • This paper was carried out to investigate the relation of pH, aciidity and sourness during Kimchi fermentation and preservatives on Kimchi fermentation. Na-acetate, Na-malate, K-sorbate and K-sorbate+acetic acid were added to Kimchi samples. These Kimchi samples were fomented for 7 days at $37^{\circ}C$ and $20^{\circ}C$. In the experiment about the sourness and buffer action by organic salts which showed that the intensity of sourness was differented by the difference of pH in the same acidity. Na-acetate (0.3%) and Na-malate (0.3%) acted as good buffer, whereas K-sorbate (0.1%) and K-sorbate (0.1%)+acetic acid (0.05%) acted as lactobacilli growth enhancer in the fermentation.

  • PDF

Production of Glutamine by Glutamine Synthetase and Acetate Kinase of Escherichia coli (Escherichia coli의 Glutamine Synthetase와 Acetate Kinase에 의한 Glutamine 생산)

  • 조정일
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.169-177
    • /
    • 1993
  • The conversion of glutamate by glutamine synthetase Is the endergonic reaction that demands ATP as its energy source. In order to supply efficiently ATP that is demanded in the conversion of glutamate to glutamine, the ATP- generating system by acetate kinase partially purified from Escherichia coli K-12 was coupled with glutamine synthetase partially purified 5. coli K-12 Pgln6. The optinum conditions of the coupled reaction were investigated. As the result, the highest conversion of glutamate to glutamine was shown In the reaction mixture containing 100mM glutamate, 100mM NHtCl, 50M acetyl phosphate, 5mM ADP, 40M MgCl2, 300mM potassium phosphate buffer (pH 7.5), 5mM MnCl2, Under this condition, the most effective concentrations of enzyme were 70unit/ml glutamine synthetase and 99unit/ml acetate kinase. Under the optinum conditions, 98% of 100mM glutamate was converted to glutamine within 6 hours.

  • PDF

On-line Monitoring of IPTG Induction for Recombinant Protein Production Using an Automatic pH Control Signal

  • Hur Won;Chung Yoon-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.304-308
    • /
    • 2005
  • The response of IPTG induction was investigated through the monitoring of the alkali consumption rate and buffer capacity during the cultivation of recombinant E. coli BL21 (DE3) harboring the plasmid pRSET-LacZ under the control of lac promoter. The rate of alkali consumption increased along with cell growth, but declined suddenly after approximately 0.2 h of IPTG induction. The buffer capacity also declined after 0.9 h of IPTG induction. The profile of buffer capacity seems to correlate with the level of acetate production. The IPTG response was monitored only when introduced into the mid-exponential phase of bacterial cell growth. The minimum concentration of IPTG for induction, which was found out to be 0.1 mM, can also be monitored on-line and in-situ. Therefore, the on-line monitoring of alkali consumption rate and buffer capacity can be an indicator of the metabolic shift initiated by IPTG supplement, as well as for the physiological state of cell growth.