• 제목/요약/키워드: Accuracy of measurement

Search Result 3,949, Processing Time 0.034 seconds

Measurement of Image Quality According to the Time of Computed Radiography System (시간에 따르는 CR장비의 영상의 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Hwang, Sun-Kwang;Lee, Ik-Pyo;Kim, Ki-Won;Jung, Jae-Yong;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.365-374
    • /
    • 2015
  • The regular quality assurance (RQA) of X-ray images is essential for maintaining a high accuracy of diagnosis. This study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) of a computed radiography (CR) system for various periods of use from 2006 to 2015. We measured the pre-sampling MTF using the edge method and RQA 5 based on commission standard international electro-technical commission (IEC). The spatial frequencies corresponding to the 50% MTF for the CR systems in 2006, 2009, 2012 and 2015 were 1.54, 1.14, 1.12, and $1.38mm^{-1}$, respectively and the10% MTF for 2006, 2009, 2012, and 2015 were 2.68, 2.44, 2.44, and $2.46mm^{-1}$, respectively. In the NPS results, the CR systems showed the best noise distribution in 2006, and with the quality of distributions in the order of 2015, 2009, and 2012. At peak DQE and DQE at $1mm^{-1}$, the CR systems showed the best efficiency in 2006, and showed better efficiency in order of 2015, 2009, and 2012. Because the eraser lamp in the CR systems was replaced, the image quality in 2015 was superior to those in 2009 and 2012. This study can be incorporated into used in clinical QA requiring performance and evaluation of the performance of the CR systems.

Development and Evaluation of Silicon Passive Layer Dosimeter Based Lead-Monoxide for Measuring Skin Dose (피부선량 측정을 위한 Lead-Monoxide 기반의 Silicon Passive layer PbO 선량계 개발 및 평가)

  • Yang, Seung-Woo;Han, Moo-Jae;Jung, Jae-Hoon;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.781-788
    • /
    • 2021
  • Due to the high sensitivity to radiation, excessive exposure needs to be prevented by accurately measuring the dose irradiated to the skin during radiation therapy. Although clinical trials use dosimeters such as film, OSLD, TLD, glass dosimeter, etc. to measure skin dose, these dosimeters have difficulty in accurate dosimetry on skin curves. In this study, to solve these problems, we developed a skin dosimeter that can be attached according to human flexion and evaluated its response characteristics. For the manufacture of the dosimeter, lead oxide (PbO) with high atomic number (ZPb: 82, ZO: 8) and density (9.53 g/cm3) and silicon binders that can bend according to human flexion were used. In the case of a dosimeter made of PbO material, the performance degradation has been prevented by using parylene and others due to the presence of degradation due to oxidation, but the previously used parylene is affected by bending, so a new form of passive layer was produced and applied to the skin dosimeter. The characteristic evaluation of the skin dosimeter was evaluated by analyzing SEM, reproducibility, and linearity. Through SEM analysis, bending was evaluated, reproducibility and linearity at 6 MeV energy were evaluated, and applicability was assessed with a skin dosimeter. As a result of observing the dosimeter surface through SEM analysis, the parylene passive layer PbO dosimeter with the positive layer raised to the parylene produced cracks on the surface when bent. On the other hand, no crack was observed in the silicon passive layer PbO dosimeter, which was raised to silicon passive layer. In the reproducibility measurement results, the RSD of the silicon passive layer PbO dosimeter was 1.47% which satisfied the evaluation criteria RSD 1.5% and the linearity evaluation results showed the R2 value of 0.9990, which satisfied the evaluation criteria R2 9990. The silicon passive layer PbO dosimeter was evaluated to be applicable to skin dosimeters by demonstrating high signal stability, precision, and accuracy in reproducibility and linearity, without cracking due to bending.

Measurements of Dissociation Enthalpy for Simple Gas Hydrates Using High Pressure Differential Scanning Calorimetry (고압 시차 주사 열량계를 이용한 단일 객체 가스 하이드레이트의 해리 엔탈피 측정)

  • Lee, Seungmin;Park, Sungwon;Lee, Youngjun;Kim, Yunju;Lee, Ju Dong;Lee, Jaehyoung;Seo, Yongwon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.666-671
    • /
    • 2012
  • Gas hydrates are inclusion compounds formed when small-sized guest molecules are incorporated into the well defined cages made up of hydrogen bonded water molecules. Since large masses of natural gas hydrates exist in permafrost regions or beneath deep oceans, these naturally occurring gas hydrates in the earth containing mostly $CH_4$ are regarded as future energy resources. The heat of dissociation is one of the most important thermal properties in exploiting natural gas hydrates. The accurate and direct method to measure the dissociation enthalpies of gas hydrates is to use a calorimeter. In this study, the high pressure micro DSC (Differential Scanning Calorimeter) was used to measure the dissociation enthalpies of methane, ethane, and propane hydrates. The accuracy and repeatability of the data obtained from the DSC was confirmed by measuring the dissociation enthalpy of ice. The dissociation enthalpies of methane, ethane, and propane hydrates were found to be 54.2, 73.8, and 127.7 kJ/mol-gas, respectively. For each gas hydrate, at given pressures the dissociation temperatures which were obtained in the process of enthalpy measurement were compared with three-phase (hydrate (H) - liquid water (Lw) - vapor (V)) equilibrium data in the literature and found to be in good agreement with literature values.

Evaluation of useful treatment which uses dual-energy when curing lung-cancer patient with stereotactic body radiation therapy (폐암 환자의 정위적방사선 치료 시 이중 에너지를 이용한 치료 방법의 유용성 평가)

  • Jang, Hyeong Jun;Lee, Yeong Gyu;Kim, Yeong Jae;Park, Yeong Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.87-99
    • /
    • 2016
  • Purpose : This study will evaluate the clinical utility by applying clinical schematic that uses monoenergy or dual energy as according to the location of tumors to the stereotactic radiotherapy to compare the change in actual dose given to the real tumor and the dose that locates adjacent to the tumor. Materials and Methods : CT images from a total of 10 patients were obtained and the clinical planning were planned based on the volumetric modulated arc therapy on monoenergy and dual energy. To analyze the change factor in the tumor, Comformity Index(CI) and Homogeneity Index(HI) and maximum dose quantity were each calculated and comparing the dose distribution on normal tissues, $V_{10}$ and $V_5$, first ~ fourth ribs closest to the tumor ($1^{st}{\sim}4^{th}$ Rib), Spinal Cord, Esophagus and Trachea were selected. Also, in order to confirm the accuracy on which the planned dose distribution is really measured, the 2-dimensional ion chamber array was used to measure the dose distribution. Results : As of the tumor factor, CI and HI showed a number close to 1 when the two energies were used. As of the maximum dose, the front chest wall showed 2% and the dorsal tumor showed equivalent value. As of normal tissue, the front chest wall tumors were reduced by 4%, 5% when both energies were used in the adjacent rib and as of trachea, reduced by 11%, 17%. As of the dose in the lung, as of $V_{10}$, it reduced by 1.5%, $V_5$ by 1%. As of the rear chest wall, when both energies were used, the ribs adjacent to the tumors showed 6%, 1%, 4%, 12% reduction, and in the lung dose distribution, $V_{10}$ reduced by 3%, and $V_5$ reduced by 3.1%. The dose measurement in all energies were in accordance to the results of Gamma Index 3mm/3%. Conclusion : It is considered that rather than using monoenergy, utilizing double energy in the clinical setting can be more effectively applied to the superficial tumors.

  • PDF

Compact Orthomode Transducer for Field Experiments of Radar Backscatter at L-band (L-밴드 대역 레이더 후방 산란 측정용 소형 직교 모드 변환기)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Joo, Jeong-Myeong;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.711-719
    • /
    • 2011
  • A study of miniaturization of an L-band orthomode transducer(OMT) for field experiments of radar backscatter is presented in this paper. The proposed OMT is not required the additional waveguide taper structures to connect with a standard adaptor by the newly designed junction structure which bases on a waveguide taper. Total length of the OMT for L-band is about 1.2 ${\lambda}_o$(310 mm) and it's a size of 60 % of the existing OMTs. And, to increase the matching and isolation performances of each polarization, two conducting posts are inserted. The bandwidth of 420 MHz and the isolation level of about 40 dB are measured in the operating frequency. The L-band scatterometer consisting of the manufactured OMT, a horn-antenna and network analyzer(Agilent 8753E) was used STCT and 2DTST to analysis the measurement accuracy of radar backscatter. The full-polarimetric RCSs of test-target, 55 cm trihedral corner reflector, measured by the calibrated scatterometer have errors of -0.2 dB and 0.25 dB for vv-/hh-polarization, respectively. The effective isolation level is about 35.8 dB in the operating frequency. Then, the horn-antenna used to measure has the length of 300 mm, the aperture size of $450{\times}450\;mm^2$, and HPBWs of $29.5^{\circ}$ and $36.5^{\circ}$ on the principle E-/H-planes.

Quality Assurance Program of Electron Beams Using Thermoluminescence Dosimetry (열형광선량계를 이용한 전자선 품질보증 프로그램에 관한 연구)

  • Rah Jeong-Eun;Kim Gwe-Ya;Jeong Hee-Kyo;Shin Dong-Oh;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2005
  • The purpose of this study has been performed to investigate the possibility of external audit program using thermoluminescence dosimetry for electron beam in korea. The TLD system consists of LiF powder, type TLD-700 read with a PCL 3 reader. In order to determine a calibration coefficient of the TLD system, the reference dosimeters are irradiated to 2 Gy in a $^{60}CO$ beam at the KFDA The irradiation is performed under reference conditions is water phantom using the IAEA standard holder for TLD of electron beam. The energy correction factor is determined for LiF powder irradiated of dose to water 2 Gy in electron beams of 6, 9, 12, 16 and 20 MeV (Varian CL 2100C). The dose is determined according to the IAEA TRS-398 and by measurement with a PTW Roos type plane-parallel chamber. The TLD for each electron energy are positioned in water at reference depth. In this study, to verify of the accuracy of dose determination by the TLD system are performed through a 'blind' TLD irradiation. The results of blind test are $2.98\%,\;3.39\%\;and\;0.01\%(1\sigma)$ at 9, 16, 20 MeV, respectively. The value generally agrees within the acceptance level of $5\%$ for electron beam. The results of this study prove the possibility of the TLD quality assurance program for electron beams. It has contributed to the improvement of clinical electron dosimetry in radiotherapy centers.

  • PDF

A study to 3D dose measurement and evaluation for Respiratory Motion in Lung Cancer Stereotactic Body Radiotherapy Treatment (폐암의 정위적체부방사선치료시 호흡 움직임에 따른 3D 선량 측정평가)

  • Choi, Byeong-Geol;Choi, Chang-Heon;Yun, Il-Gyu;Yang, Jin-Seong;Lee, Dong-Myeong;Park, Ju-Mi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • Purpose : This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). Materials and Methods : For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was performed. We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Results : Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03~0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with $V_{20}$, $V_{10}$, $V_5$ of Lung was -0.04%~2.32%. The average Homogeneity Index difference between MIP and each phase 3d data of all patient was -0.03~0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.

Measurement of Radiation Using Tissue Equivalent Phantom in ICR Treatment (자궁강내 근접방사선조사시 인체조직등가 팬톰을 이용한 방사선량 측정)

  • Jang, Hong-Seok;Suh, Tae-Suk;Yoon, Sei-Chul;Ryu, Mi-Ryeong;Bahk, Yong-Whee;Shinn, Kyung-Sub
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • This study is to compare A point doses in human pelvic phantom by film dosimetry, computer planning and manual calculation by using of along-away table. We developed tissue equivalent human pelvic phantom composed of four pieces of cylindrical acryl tubes with water, to simulate intracavitary radiation (ICR) in patients with cervix cancer. When the phantom assembled from 4 pieces, it has a small space for inserting Fletcher-Suit-Delclos applicator like a human vagina. Fletcher-Suit-Delclos applicator inserted into the space was packed tightly with furacin gauzes, and three $^{137}Cs$ sources with radioactivity of $15.7mg\;Ra-eq$ were inserted into the tandem. For the film dosimetry, two pieces of X-OMAT V film (Kodak Co.) of which planes include point A, were arranged orthogonally in the slits between phantoms. A point dose and iso-dose curves were measured by means of optical densitometer. A point doses by film dosimetry, RTP system and manual calculation by using of along-away table were compared, and iso-dose curves by film dosimetry and computer planning were also compared. The dose of A point was 51.2cGy/hr by film dosimetry, 46.7cGy/hr by RTP system and 47.9 cGy/hr by along-away table. A point dose by computer planning was similar to the dose by calculation using of along-away table with acceptable accuracy $({\pm}3%)$, however, the dose by film dosimetry was different from two others with about 10% error. Since most clinical beams contains a scatter component of low energy photons, the correlation between optical density and dose becomes tenuous. In addition, film suffers from several potential errors such as changes in processing conditions, interfilm emulsion differences, and artifacts caused by air pockets adjacent to the film. For these reasons, absolute dosimetry with film is impractical, however, it is very useful for checking qualitative patterns of a radiation distribution. In future, solid state dosimeter such as TLD must be used for the dosimetry of ionizing radiation. When considerable care is used, precision of approximately 3% may be obtained using TLD.

  • PDF

The Nasal Airflow Pressure Monitoring and the Measurement of Airway Pressure Changes in Obstructive Sleep Apnea Syndrome and Upper Airway Resistance Syndrome (수면무호흡증과 상기도저항 증후군에서 Nasal Airflow의 압력측정 및 상기도 압력변화에 대한 연구)

  • Kim, Hoo-Won;Hong, Seung-Bong
    • Sleep Medicine and Psychophysiology
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Objectives: The sensitivity and accuracy of thermistor airflow signal has been debated. The purposes of this study were to compare apnea-hypopnea index(AHI) detected from a conventional thermistor signal and a nasal pressure transducer of airflow(NPT), to evaluate the value of NPT for the diagnosis of upper airway resistance syndrome(UARS), and to measure airway pressure fluctuations which produced respiratory arousals in UARS by naso-oro-esophageal manometer catheter. The subjects were 30 patients with obstructive sleep apnea syndrome [mild(540), 10), and 6 UARS patients. Airway resistance arousal in this study was defined as arousals which were not associated with apnea or hypopnea of thermistor signal, but showed significant decrease of nasal airflow pressure just before arousal and a prompt recovery of nasal airflow pressure after arousal. The airway pressure fluctuations were measured during 260 airway resistance arousals observed in 10 patients with OSAS, 2 with UARS. Results: Mean AHIs of patients with OSAS were 33.4 by thermistor and 48.4 by NPT. The AHIs of mild, moderate and severe OSAS groups were 10.2, 32.1, 65.4 respectively by thermistor and 23.1, 45.9, 76.4 by NPT. The mean AHI of patients with UARS was 3.2 by thermistor and 10.8 by NPT. The mean AHI of patients with nonspecific arousals was 2.7 by thermistor and 4.4 by NPT. The mean airway pressure changes during respiratory arousals of different groups were $8.7\;cmH_2O$ in mild OSAS, $11.4\;cmH_2O$ in moderate OSAS, $24.7\;cmH_2O$ in severe OSAS and $6.6\;cmH_2O$ in UARS. Conclusion: The nasal pressure transducer of airflow was more sensitive and accurate for assessing respiratory disturbances of patients with OSAS and was extremely helpful for the diagnosis of UARS without esophageal pressure monitoring. From the results, we would like to propose carefully the NPT diagnostic criteria for sleep disordered breathing as follows: NPT-AHI 5-15 $\rightarrow$ UARS, 15-35 $\rightarrow$ mild OSAS, 35-55 $\rightarrow$ moderate OSAS and >55 $\rightarrow$ severe OSAS.

  • PDF