• Title/Summary/Keyword: Accuracy improvement

Search Result 2,373, Processing Time 0.032 seconds

Experiment for Modification of wheel-radius using Curvature (방향이탈각을 이용한 구륜보정을 위한 실험)

  • 노택종;문종우박종국
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.267-270
    • /
    • 1998
  • Unequal wheel-radius causes odometry errors which may be increased unbounded. This paper deals with the practical method for modification of wheel-radius through experiments. This can increase the robot's odometric accuracy. Experimental results are presented that show improvement of odometric accuracy.

  • PDF

Improvement of Robot Motion Accuracy Through Link Parameter Calibrationa (연자보정 방법을 이용한 로보트 운동 정밀도 개선)

  • 이상조;조의정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.21-26
    • /
    • 1988
  • The application of robot to industry is increasing and as a result the study on robot is widely being carried out. In this study, to improve the accuracy of robot motion the method which calibrates initially assumed link parameters is considered. This method calibrates 4N link parameters for N D.O.F. robot with rigid links.

  • PDF

Evaluating the Accuracy of Blood Pressure Measurement (혈압측정의 정확성 평가)

  • Cho, Sung-Hyun;Hwang, Jeong-Hae;Kim, Eun-Gyung;Oh, Byung-Hee;Kim, Chang-Yup
    • Quality Improvement in Health Care
    • /
    • v.3 no.1
    • /
    • pp.94-103
    • /
    • 1996
  • Background : Blood pressure is an important indicator in diagnosis and assessing treatment of a patient. Clinical staffs use blood pressure on the assumption that measured value is accurate and reliable. However, whether measured blood pressure is accurate has been rarely investigated in Korea. Objectives : The aims of this study are to evaluate clinical staffs' knowledge and technique as well as accuracy of sphygmomanometer. Also the program to improve the measurement is developed. Methods : Seventy-three registered nurses were asked nine multiple choice questions including Korotkoff sound, cuff size, and deflation rate. Simultaneously characteristics of nurses were examined, age, working place, duration of employment and academic degree. A testing videotape(Standardizing Measurement Video-Tutored Course) was used for evaluating the accuracy of measurement. Testees were to read and record the 12 cases of blood pressure measurement, watching a falling mercury column and hearing Korotkoff sounds. After 10 minutes' education, they were again tested with the same cases. Additionally, 83 mercury sphygmomanometers were checked to find defects such as inaccurate calibration and zero setting, leaky bladder, etc. Results: For the knowledge testing correct response rate was 41.1%. They were the lowest in selecting the proper cuff size and Korotkoff sound. In examining accuracy of blood pressure with videotape, nurses had 67.7% correct response rate. The correct response rate was significantly improved by a session of education. About 23% of sphygmomanometers was without discernable defects. Conclusion : The knowledge and skill of clinical staffs along with the accuracy of equipment have to be improved. A properly designed education program would contribute to the accuracy improvement of blood pressure measurement. Also, more concerns should be given to the precision and maintenance of equipment.

  • PDF

Enhancing Location Estimation and Reducing Computation using Adaptive Zone Based K-NNSS Algorithm

  • Song, Sung-Hak;Lee, Chang-Hoon;Park, Ju-Hyun;Koo, Kyo-Jun;Kim, Jong-Kook;Park, Jong-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.119-133
    • /
    • 2009
  • The purpose of this research is to accurately estimate the location of a device using the received signal strength indicator (RSSI) of IEEE 802.11 WLAN for location tracking in indoor environments. For the location estimation method, we adopted the calibration model. By applying the Adaptive Zone Based K-NNSS (AZ-NNSS) algorithm, which considers the velocity of devices, this paper presents a 9% improvement of accuracy compared to the existing K-NNSS-based research, with 37% of the K-NNSS computation load. The accuracy is further enhanced by using a Kalman filter; the improvement was about 24%. This research also shows the level of accuracy that can be achieved by replacing a subset of the calibration data with values computed by a numerical equation, and suggests a reasonable number of calibration points. In addition, we use both the mean error distance (MED) and hit ratio to evaluate the accuracy of location estimation, while avoiding a biased comparison.

  • PDF

A study on the Accurate Comparison of Nonlinear Solution Which Used Tangent Stiffness Equation and Nonlinear Stiffness Equation (접선 강성방정식과 비선형 강성방정식을 이용한 비선형 해의 정확성 비교에 관한 연구)

  • Kim, Seung-Deog;Kim, Nam-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.95-103
    • /
    • 2010
  • This paper study on the accuracy improvement of nonlinear stiffness equation. The large structure must have thin thickness for build the large space structure there fore structure instability review is important when we do structural design. The structure instability of the shelled structure is accept it sensitively by varied conditions. This come to a nonlinear problem with be concomitant large deformation. Accuracy of nonlinear stiffness equation must improve to examine structure instability. In this study, space truss is analysis model Among tangent stiffness equation and nonlinear stiffness equation is using nonlinearity analysis program. The study compares an analysis result to investigate accuracy and convergence properties improvement of nonlinear stiffness equation.

  • PDF

Accuracy Improvement of a 5-axis Hybrid Machine Tool (5축 혼합형 공작기계의 정밀도 향상 연구)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this paper, a novel 5-axis hybrid-kinematic machine tool is introduced and the research results on accuracy improvement of the prototype machine tool are presented. The 5-axis hybrid machine tool is made up of a 3-DOF parallel manipulator and a 2-DOF serial one connected in series. The machine tool maintains high ratio of stiffness to mass due to the parallel structure and high orientation capability due to the serial-type wrist. In order to acquire high accuracy, the methodology of measuring the output shafts by additional sensors instead of using encoder outputs at the motor shafts is proposed. In the kinematic view point, the hybrid manipulator reduces to a serial one, if the passive joints in the U-P serial chain at the center of the parallel manipulator are directly measured by additional sensors. Using the method of successive screw displacements, the kinematic error model is derived. Since a ball-bar is less expensive than a full position measurement device and sufficiently accurate for calibration, the kinematic calibration method of using a ball-bar is presented. The effectiveness of the calibration method has been verified through the simulations. Finally, the calibration experiment shows that the position accuracy of the prototype machine tool has been improved from 153 to $86{\mu}m$.