• Title/Summary/Keyword: Accuracy comparison

Search Result 3,230, Processing Time 0.049 seconds

DEA Models and Application Procedure for Performance Evaluation on Governmental Funding Projects for IT Small and Medium-sized Enterprises with Exogenously Fixed Variables of Corporate Competency (기업역량을 고려한 외생고정변수를 갖는 IT중소기업 정부자금지원정책 성과평가를 위한 DEA모형 및 활용절차)

  • Park, Sung-Min;Kim, Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.364-378
    • /
    • 2008
  • Data Envelopment Analysis(DEA) models can be used for performance evaluation on governmental funding projects for IT small and medium-sized enterprises associated with multiple-outputs/multiple-inputs. In order to enhance the accuracy of DEA efficiency scores, DEA models with exogenously fixed variables are required where the corporate competency is taken into account. Additionally, it is necessary to use multiple DEA basic as well as extended models so as to relax the restriction on the performance evaluation to relying on a single DEA model. In this study; 1)a DEA data structure is designed including exogenously fixed variables representing corporate asset, revenue and the number of employees at the point in time that the governmental funding project concerned is initiated; 2)DEA basic as well as extended models are established according to the DEA data structure presented abovementioned; and 3)a case study is illustrated with an empirical testbed dataset. As for the DEA basic models, CCR, BCC, Super-efficiency model are adopted. The DEA extended models are developed based on the models associated with noncontrollable and nondiscretionary variables. In the case study, it is explained a comparison of DEA models and also major numerical outcomes such as efficiency scores, ranks derived from each DEA model are integrated using Analytic Hierarchy Process(AHP) weights. Performance significance with DEA efficiency scores between technical categories are tested based not only on parametric but also nonparametric single-factor analysis of variance method.

Trajectory Clustering in Road Network Environment (도로 네트워크 환경을 위한 궤적 클러스터링)

  • Bak, Ji-Haeng;Won, Jung-Im;Kim, Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.317-326
    • /
    • 2009
  • Recently, there have been many research efforts proposed on trajectory information. Most of them mainly focus their attention on those objects moving in Euclidean space. Many real-world applications such as telematics, however, deal with objects that move only over road networks, which are highly restricted for movement. Thus, the existing methods targeting Euclidean space cannot be directly applied to the road network space. This paper proposes a new clustering scheme for a large volume of trajectory information of objects moving over road networks. To the end, we first define a trajectory on a road network as a sequence of road segments a moving object has passed by. Next, we propose a similarity measurement scheme that judges the degree of similarity by considering the total length of matched road segments. Based on such similarity measurement, we propose a new clustering algorithm for trajectories by modifying and adjusting the FastMap and hierarchical clustering schemes. To evaluate the performance of the proposed clustering scheme, we also develop a trajectory generator considering the observation that most objects tend to move from the starting point to the destination point along their shortest path, and perform a variety of experiments using the trajectories thus generated. The performance result shows that our scheme has the accuracy of over 95% in comparison with that judged by human beings.

Shallow Water Wave Hindcasting by the Combination of MASCON and SWAN Models (지형을 고려한 해상풍 모델(MASCON)과 SWAN 모델의 결합에 의한 천해파랑 산정)

  • Kim, Ji-Min;Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Shallow water waves are hindcasted from sea wind fields, which include wave transformations such as shoaling, refraction, diffraction, reflection and wave breaking. In case of estimating sea wind field in shallow water, the sea wind revised from free wind obtained by the typhoon model is widely used. However, this method is not able to consider the effect of land topography on the wind field, which will be important factor for shallow water wave forecasting and hindcasting. In this study, therefore, the effect of land topography on sea wind field in shallow water is investigated for shallow water wave forecasting and hindcasting with high accuracy. The 3-D MASCON model is introduced to consider the influence of land topography on the wind field. And, for two areas divided by the topographical characteristics, i.e. shielded and opened coastal areas, sea wind field is examined by comparison between initial wind field by typhoon model and modified wind field by 3-D MASCON model. Finally, applying these sea wind fields to SWAN model, the results of shallow water wave calculated in shielded and opened coastal areas are compared, and, also, the effect of MASCON model on shallow water wave forecasting and hindcasting is discussed.

Comparison of Volume of Fluid (VOF) type Interface Capturing Schemes using Eulerian Grid System (오일러 격자체계에서 유체율 함수에 기초한 경계면 추적기법의 비교)

  • Kim, Do-Sam;Kim, Tag-Gyeom;Shin, Bum-Shick;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The application of multiphase flows is increasingly being applied to analyze phenomena such as single phase flows where the fluid boundary changes continuously over time or the problem of mixing a liquid phase and a gas phase. In particular, multiphase flow models that take into account incompressible Newtonian fluids for liquid and gas are often applied to solve the problems of the free water surface such as wave fields. In general, multi-phase flow models require time-based the surface tracking of each fluid's phase boundary, which determines the accuracy of the final calculation of the model. This study evaluates the advection performance of representative VOF-type boundary tracking techniques applied to various CFD numerical codes. The effectiveness of the FCT method to control the numerical flux to minimize the numerical diffusion in the conventional VOF-type boundary tracking method and advection calculation was mainly evaluated. In addition, the possibility of tracking performance of free surface using CIP method (Yabe and Aoki, 1991) was also investigated. Numerical results show that the FCT-VOF method introducing an anti-diffusive flux to precent excessive diffusion is superior to other methods under the confined conditions in this study. The results from this study are expected to be used as an important basic data in selecting free surface tracking techniques applied to various numerical codes.

High Resolution Gyeonggi-do Agrometeorology Information Analysis System based on the Observational Data using Local Analysis and Prediction System (LAPS) (LAPS와 관측자료를 이용한 고해상도 경기도 농업기상정보 분석시스템)

  • Chun, Ji-Min;Kim, Kyu-Rang;Lee, Seon-Yong;Kang, Wee-Soo;Park, Jong-Sun;Yi, Chae-Yon;Choi, Young-Jean;Park, Eun-Woo;Hong, Sun-Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.2
    • /
    • pp.53-62
    • /
    • 2012
  • Demand for high resolution weather data grows in the agriculture and forestry fields. Local Analysis and Prediction System (LAPS) can be used to analyze the local weather at high spatial and temporal resolution, utilizing the data from various sources including numerical weather prediction models, wind or temperature profilers, Automated Weather Station (AWS) networks, radars, and satellites. LAPS has been set to analyze weather elements such as air temperature, relative humidity, wind speed, and wind direction every hour at the spatial resolution of $100m{\times}100m$ for Gyeonggi-do on near real-time basis. The AWS data were revised by adding the agricultural field AWS data (33 stations) in addition to the KMA data. The analysis periods were from 1 to 31 August 2009 and from 15 to 21 February 2010. The comparison of the LAPS output showed the smaller errors when using the agricultural AWS observation data together with the KMA data as its input data than using only either the agricultural or KMA AWS data. The accuracy of the current system needs improvement by further optimization of analyzing options of the system. However, the system is highly applicable to various fields in agriculture and forestry because it can provide site specific data with reasonable time intervals.

A Development of Simple Fuel Consumption Estimation and Optimized Route Recommendation System based on Voyage Data of Vessel (항차 데이터 기반 간이 연료 소모량 추정 및 최적 경유 항구 추천 시스템 개발)

  • Woo, Snag-Min;Hwang, Hun-Gyu;Kim, Bae-Sung;Woo, Yun-Tae;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.480-490
    • /
    • 2018
  • Recently, The MRV (monitoring, reporting and verification) regulation, which measures, reports and verifies the emission gas of vessel to head for member countries of Europe Union (EU), is being implemented. As part this reason, we develop a system that estimates simple fuel consumption and recommends optimized stop-over ports of vessel, to calculate amount of carbon emission. To do this, we analyze fuel, distance and time consumption between port and the other port based on stored voyage data for over 10 years of real-ship, and implement a simple fuel consumption estimation module using analyzed result. Also, we design and implement the optimized route recommendation algorithm, existing navigation route display function including comparison with the optimized routes and user custom route plan function. Therefore, we expect the developed system is helpful when makes a navigation route and so on by reference indexes and we anticipate the system to have a sense for future research which learns and predicts for accuracy result.

Estimation of Surface Reflectance by Utilizing Single Visible Reflectance from COMS Meteorological Imager - Analysis of BAOD correction effect - (천리안위성 기상 탑재체의 가시 채널 관측을 이용한 지표면 반사도 산출 - 배경광학두께 보정의 효과 분석 -)

  • Kim, Mijin;Kim, Jhoon;Yoon, Jongmin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.627-639
    • /
    • 2014
  • Accurate correction of surface effect from back scattered solar radiance is one of key issue to retrieve aerosol information from satellite measurements. In this study, two different methods are applied to retrieve surface reflectance by using single visible channel measurement from meteorological imager onboard COMS. The first one is minimum reflectance method, which composes the minimum value among previously measured reflectances at each pixel over a certain search window length. This method assumes that the darkest pixel corresponds to the aerosol-free condition, and deduces surface reflectance by correcting atmospheric scattering from the measured visible reflectance. The second method, named as the "atmospheric correction method" in this study, estimates the result by correcting aerosol and atmospheric scattering with ground-based observation of aerosol optical properties. The purpose of this study is to investigate the retrieval accuracy of the widelyused minimum reflectance method. Also, the retrieval error caused by the loading of background aerosol is mainly estimated. The comparison between surface reflectances retrieved from the two methods shows good agreement with the correlation coefficient of 0.87. However, the results from the minimum reflectance method are slightly overestimated than the values from the atmospheric correction method when surface reflectance is lower than 0.2. The average difference between the two results is 0.012 without the background aerosol correction. By considering the background aerosol effect, however, the difference is reduced to 0.010.

3D Finite Element Analysis of Lateral Loaded Pile using Beam and Rigid Link (빔요소와 Rigid 링크를 이용한 수평하중에 대한 말뚝 거동 3차원 유한요소해석)

  • Park, Du-Hee;Park, Jong-Bae;Kim, Sang-Yeon;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.4 no.3
    • /
    • pp.271-277
    • /
    • 2013
  • The BNWF (Beam on Nonlinear Winkler Foundation) model is one of the simplest idealizations for a pile embedded in soil as it ignores the continuity of the soil. This method is difficult to model the behavior of pile group foundation subjected to lateral loading. The limitation can be overcome with the utilization of the finite element method (FEM) or finite different method (FDM) to represent a pile element embedded in a soil medium. Both the ground and piles are modeled with soild elements. The solid elements, which do not have rotational degree of freedom, is not appropriate for modeling piles. It can be overcome by substantially increasing the number of elements, which can be prohibitive for 3D modeling. This paper used the beam element and rigid link incorporated in the OpenSees to model the pile. The accuracy of the model is validated through comparison with lateral load test and BNWF analysis. It is shown that the method can capture the measured behavior accurately. It is therefore recommended to be used in group pile analyses.

Study on Characteristice of Transient Soulte Transport in the Vadose Zone by Using TDR: (1) Relationship between Water Content and Realtive Electrical Conductivity (TDR(Time Domain Reflectometry)를 이용한 비포화 토양에서 천이상태의 오염원 이송확산 특성에 관한 연구 : (1) 함수량과 상대전기전도도의 관계)

  • Park, Jae-Hyeon;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.741-749
    • /
    • 1999
  • This study is to develop a method of measuring the soil water concentration by using TDR, which is based on the relationships between the bulk soil electrical conductivity of soil and the reflected wave of TDR. The proposed monitoring method is combined with two important relationships. One is that between the bulk soil electrical conductivity and the solute concentration, which is known to be linear at a constant volumetric soil water content and the other is that between the relative bulk soil electrical conductivity and the water content at a constant concentration. Some formulas have been proposed to solve the second relationship, but a new formula and the critical water content are proposed to improve the accuracy of measurement. This proposed formula estimates the relative bulk soil electrical conductivity for water contents which is divided to two regions, linear and nonlinear, by the critical water content. As the result of the comparison with other formulas, the proposed formula is proved to be superior to other formulas and to be an available method to apply to the unsaturated transient solute transport.

  • PDF

Application of Monthly Water Balance Models for the Climate Change Impact Assessment (기후변화 영향평가를 위한 월 물수지모형의 적용성 검토)

  • Hwang, Jun-Shik;Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.147-158
    • /
    • 2007
  • This study attempted to determine a suitable hydrologic model for assessing the impact of climate change on water resources, and to assess the accuracy of streamflow scenarios simulated by the selected hydrologic model using the meteorological scenarios of the Seoul National University Regional Climate Model(SNURCM). Comparison of four water balance models and two daily conceptual rainfall-runoff models for the simulation capability of the Daecheong Dam inflow indicated that the abcd model performs the best among the tested water balance models and performs as well as SSARR that is popular as a daily rainfall-runoff model in Korea. Parameters of the abcd model were then estimated for 12 ungauged subbasins of the Geum River by the regionalization method. The model parameters were first calibrated at nine multi-purpose dams and were then regionalized using catchment characteristics for another four multi-purpose dams, which were assumed to be ungauged sites. The model efficiency(ME) coefficients of the simulated inflows for these four dams were at least 87%. The MEs of the hindcasted meteorological rainfall scenarios of the 12 subbasins of the Geum River were more than 60%. Moreover, the ME of the Daecheong Dam inflow simulated by the abcd model using the SNURCM rainfall scenarios was more than 80%. Therefore, this research concluded that the abcd model coupled with the SNU-RCM meteorological scenarios can be used for impact assessment studies of climate change on water resources.