• Title/Summary/Keyword: Accuracy comparison

Search Result 3,230, Processing Time 0.036 seconds

Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches (시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지)

  • Jung, Sihun;Kim, Young Jun;Park, Sumin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1077-1093
    • /
    • 2020
  • Sea Surface Temperature (SST) is an important environmental indicator that affects climate coupling systems around the world. In particular, coastal regions suffer from abnormal SST resulting in huge socio-economic damage. This study used Long Short Term Memory (LSTM) and Convolutional Long Short Term Memory (ConvLSTM) to predict SST up to 7 days in the south sea region in South Korea. The results showed that the ConvLSTM model outperformed the LSTM model, resulting in a root mean square error (RMSE) of 0.33℃ and a mean difference of -0.0098℃. Seasonal comparison also showed the superiority of ConvLSTM to LSTM for all seasons. However, in summer, the prediction accuracy for both models with all lead times dramatically decreased, resulting in RMSEs of 0.48℃ and 0.27℃ for LSTM and ConvLSTM, respectively. This study also examined the prediction of abnormally high SST based on three ocean heatwave categories (i.e., warning, caution, and attention) with the lead time from one to seven days for an ocean heatwave case in summer 2017. ConvLSTM was able to successfully predict ocean heatwave five days in advance.

Comparison of Direct Digital Radiography and Conventional Film Screen Radiography for Detection of Peritoneal Fluid in Dogs (개에서 복수의 평가에 있어서 필름-증감지 방사선 사진과 디지털 방사선 사진의 비교)

  • Choi, Ho-Jung;O, I-Se;Lee, Ki-Ja;Lee, Young-Won
    • Journal of Veterinary Clinics
    • /
    • v.29 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • This study was performed to evaluate the sensitivity of conventional film-screen radiography (CFSR) and direct digital radiography (DDR) for detection of various amounts of free peritoneal fluid. Ten adult male healthy beagles were used in this study. Radiographic examinations were performed in the right lateral and ventrodorsal positions. Fluid was injected in increments of 2.0 ml/kg of body weight up to 20.0 ml/kg of body weight. The images of CFSR and DDR were evaluated by two veterinary radiologists for evidence of abdominal fluid without knowledge of injected fluid volume. Data were evaluated by using the receiver operation curve (ROC) analysis and the area under the curve (AUC). There was no significant difference in detection of peritoneal fluid between DDR and CFSR in the ROC analysis. The accuracy of CFSR (0.805) was relatively higher than that of DDR (0.733), based on the ROC analysis and AUC. AUC of CFSR was higher in most injection doses. These results suggest that CFSR is more accurate than DDR for the detecting peritoneal fluid. Therefore, for situation in which digital radiographs are equivocal or small amount of fluid is suspected, other imaging modalities, such as ultrasonography would be helpful for determining the presence of fluids.

Comparison of ACFAS method and DNPH-LC method for quantitative analysis of formaldehyde in Drinking water (자동연속흐름-흡광광도법과 DNPH-LC법에 의한 먹는물 중 포름알데히드 정량분석 비교)

  • Yi, Geon-Ho;Yun, In-Chul;Kim, Yeong-Kwan;Kim, Chong-Chaul;Choi, Geum-Jong;Lee, Teak-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.827-836
    • /
    • 2013
  • Due to the stringent drinking water quality, formaldehyde will be included in Korean drinking water standard from year 2014. However, its standard analytical method has not yet been established. This study compares two analytical methods, DNPH-LC and ACFAS with respect to their analysis principles, Method Detection Limit (MDL), Limit Of Quantitation(LOQ), precision, accuracy, reproducibility, convenience, number of samples analyzed per hour and analysis cost. These methods measure absorption intensity at 360 nm by using HPLC after DNPH-derivatization (DNPH-LC) and at 410 nm by using Automated Continuous Flow Absorption Spectrophotometer (ACFAS), respectively. Reproducibility was tested by repeating the analysis 7 times using a standard solution for each method. For DNPH-LC method, MDL was $0.5{\mu}g/L$, LOQ was $1.58{\mu}g/L$ with standard deviation of $0.16{\mu}g/L$. For ACFAS method, they were $0.27{\mu}g/L$, $0.85{\mu}g/L$L with standard deviation of $0.09{\mu}g/L$, respectively. Both methods satisfied the requirement set by the Korean drinking water quality standard. Complexity of sample pretreatment procedure for DNPH-LC method may cause large error and, consequently, the analytical result will depend on the level of skill of analyst. In contrast, ACFAS method which used only one reagent equipped with an automated injection device showed little analytical error. It costs about $5.00 and $1.00 for one sample to analyze by the DNPH-LC method and the ACFAS method, respectively. Compared to the DNPH-LC method, ACFAS method provided more reliable analytical results. In terms of convenience, easiness and analytical cost, ACFAS method was demonstrated to be superior to the DNPH-LC method. The results of this study suggested that the ACFAS method could be adapted as a proper method for determining formaldehyde content in drinking water.

Simulation and Evaluation of ECT Signals From MRPC Probe in Combo Calibration Standard Tube Using Electromagnetic Numerical Analysis (전자기 수치 해석을 이용한 Combo 표준 보정 시험편의 MRPC Probe 와전류 신호 모사 및 평가)

  • Yoo, Joo-Young;Song, Sung-Jin;Jung, Hee-Jun;Kong, Young-Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.90-98
    • /
    • 2006
  • Signals captured from a Combo calibration standard tube paly a crucial role in the evaluation of motorized rotating pancake coil (MRPC) probe signals from steam generator (SG) tubes in nuclear power plants (NPPs). Therefore, the Combo tube signals should be consistent and accurate. However, MRPC probe signals are very easily affected by various factors around the tubes so that they can be distorted in their amplitudes and phase angles which are the values specifically used in the evaluation. To overcome this problem, in this study, we explored possibility of simulation to be used as a practical calibration tool far the evaluation of real field signals. For this purpose, we investigated the characteristics of a MRPC probe and a Combo tube. And then using commercial software (VIC-3D) we simulated a set of calibration signals and compared to the experimental signals. From this comparison, we verified the accuracy of the simulated signals. Finally, we evaluated two defects using the simulated Combo tube signals, and the results were compared with those obtained using the actual field calibration signals.

Chemical Preservation Methods of Urine Sediment for Quality Control (정도관리를 위한 요침사의 화학적 보존방법)

  • Cho, Soung Suck;Kim, Myong Soo;Shin, Kyung-A
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.359-365
    • /
    • 2017
  • There is greater standardization of quality control for microscopic examination of urine than for physicochemical test. In this study, we investigated whether it is possible to control the sediment accuracy by microscopic examination through the real thing by preserving the essential sediment with glutaraldehyde, which is required for the rationality of sediment quality control. A urine specimen was prepared using 2.5% glutaraldehyde as a preservation solution. Samples treated with urine preservatives confirmed the morphological deformation of the cells for four weeks at intervals of one week and confirmed whether they should be preserved for 4 weeks thereafter. After preparing the required sediment slide, two more slides were produced; one was stored in a refrigerator for, and the other was stored at room temperature. The morphological deformation of the specimen was confirmed. Glutaraldehyde has the effect of preserving the refrigerated essential sediments and storing them for up to 8 weeks, refrigerated storage after slide production, stabilized by 3 days. Moreover, after treatment with preservatives, the production of the slide and comparison between the measured values between the laboratories and examiners showed a low consistency. In conclusion, we showed that the urine sediment components can be preserved, and it can be used for quality control and education through real objects.

A Study on the Comparison of Injection Rate Measurement by the Bosch`s Method and the Zeuch`s Method (Bosch법과 Zeuch법에 의한 분사율 , 측정의 비교연구)

  • Ra, Jin-Hong;Kim, Jun-Hyo;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 1990
  • There have been many methods for measuring the injection rate of diesel engines, but the results of them are not always identical and the reason for the discordance is not clear. Besides, a single shot injection equipment has been used for the fuel spray and the combustion research of diesel engines, but the results of experiment using the equipment don't apply to a volleyed shot injection of real engines. This paper investigates the merits and faults of the Bosch's method and the Zeuch's method, at the same, this paper also compares the injection rates of single shot inject rates of single shot injection and a volleyed shot injected by the Bosch's method. the results are summarized as follows: (1) The measurement error of the Bosch's method is about $\pm$1%, therefore, its accuracy is reliable. (2) By the Bosch's method, as the speed and the load of fuel pump increase, the injection rate becomes higher, on the contrary, the injection period(ms) shortens as the speed increases and the load decreases. (3) In this experiment, the injection rate of a single shot injection is lower than that of a volleyed shot injection under the same conditions. (4) The bulk modulus of elasticity using the Zeuch's method increases in proportion to the back pressure. (5) The Zeuch's method is less accurate than the Bosch's method.

  • PDF

A Comparison on the Positioning Accuracy from Different Filtering Strategies in IMU/Ranging System (IMU/Range 시스템의 필터링기법별 위치정확도 비교 연구)

  • Kwon, Jay-Hyoun;Lee, Jong-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.263-273
    • /
    • 2008
  • The precision of sensors' position is particularly important in the application of road extraction or digital map generation. In general, the various ranging solution systems such as GPS, Total Station, and Laser Ranger have been employed for the position of the sensor. Basically, the ranging solution system has problems that the signal may be blocked or degraded by various environmental circumstances and has low temporal resolution. To overcome those limitations a IMU/range integrated system could be introduced. In this paper, after pointing out the limitation of extended Kalman filter which has been used for workhorse in navigation and geodetic community, the two sampling based nonlinear filters which are sigma point Kalman filter using nonlinear transformation and carefully chosen sigma points and particle filter using the non-gaussian assumption are implemented and compared with extended Kalman filter in a simulation test. For the ranging solution system, the GPS and Total station was selected and the three levels of IMUs(IMU400C, HG1700, LN100) are chosen for the simulation. For all ranging solution system and IMUs the sampling based nonlinear filter yield improved position result and it is more noticeable that the superiority of nonlinear filter in low temporal resolution such as 5 sec. Therefore, it is recommended to apply non-linear filter to determine the sensor's position with low degree position sensors.

Accuracy Evaluation of DEM Construction for River Region using ALS & MBES (ALS와 MBES를 이용한 하천지역 DEM 구축의 정확도 평가)

  • Kwon, O-Chul;Kwon, Jay-Hyoun;Lee, Ji-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.421-428
    • /
    • 2009
  • In Korea, the change of river flux due to seasons change is so considerable because of the mountainous terrain with the sharp slope and leaned rainfall. This unfavorable natural condition and the difficulties in precise grasping of the river status made the water resource management difficult so that the necessity of the precise river management has been continuously increased. In this study, a precise river-region DEM using the latest equipments of ALS and MBES is constructed. After acquiring DEM from each senor on the river region, a single DEM was generated by combining them. Also, the field inspection was carried out in the overlapped region of ALS and MBES in order to verify the quality of DEM. The verification of DEM was carried out by comparison between TINs obtained from the combined result of ALS and MBES and the surveying result from total station at more than 10 points in the selected two test areas. As a result, NO.1-area's RMSE of 0.322m and 0.113m are obtained for NO. 1 and NO. 2 areas, respectively. The result of this study shows the feasibility of DEM construction for river region using ALS and MBES as seen in the case of NO. 2 area. At the same time, it was appeared that a better method on the data fusion should be developed as seen in the result of NO. 1 area.

Development of Radionuclide Inventory Declaration Methods Using Scaling Factors for the Korean NPPs - Scope and Activity Determination Method - (국내 원전 대상의 척도인자를 활용한 핵종재고량 규명 방법의 개발 - 범위 및 방사능 결정 방법-)

  • Hwang, Ki-ha;Lee, Sang-chul;Kang, Sang-hee;Lee, Kun-Jai;Jeong, Chan-woo;Ahn, Sang-myeon;Kim, Tae-wook;Kim, Kyoung-doek;Herr, Young-hoi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • Regulations and guidelines for radioactive waste disposal require detailed information about the characteristics of radioactive waste drums prior to transport to the disposal sites. However, estimation of radionuclide concentrations in the drummed radioactive waste is difficult and unreliable. In order to overcome this difficulty, scaling factor (SF) method has been used to assess the activities of radionuclides, which could not be directly analyzed. A radioactive waste assay system has been operated at Korean nuclear power plant (KORI site) since 1996 and consolidated SF concept has played a dominant role in the determination of radionuclide concentrations. However, SFs are somewhat dispersive and limited in KORI site. Therefore establishment of the assay system using more improved SFs is planned and progressed. In this paper, the scope of research is briefly introduced. For the selection of more reliable activity determination method, the accuracy of predicted SF values for each activity determination method is compared. From the comparison of each activity determination method, it is recommended that SF determination method should be changed from the arithmetic mean to the geometrical mean for more reliable estimation of radionuclide activity. Arithmetic mean method and geometric mean method are compared based on the data set in KORI system. And, this change of SF determination method will prevent an inordinate over-estimation of radionuclide inventory in radwaste drum.

  • PDF

A study on the development of tunnel soundness evaluation system using artificial neural network (인공신경망을 이용한 터널 건전도 평가시스템 개발)

  • 김현우;김영근;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 1999
  • One of the major roles of concrete lining is the supplementary support of ground load. Therefore, if there are cracks or deformation found in the lining, the causes should be carefully examined. Tunnel Soundness Evaluation System (DW-TSES) was developed to meet such requirements. Main facility of the system was intended to find the probable causes on the basis of the apparent changes in lining and the environmental conditions. It also includes facilities for evaluating the soundness of a tunnel and indicating the method for repair or reinforcement. The characteristic feature of damages is used for reasoning in case of deterioration and leakage, and artificial neural network is used in external pressure. This process depends on the results of the case analyses and FDM, which have a collection of the typical features of different types of damages as well as the unusual changes caused by the external pressure. The comparison of the outputs of this system with those of expert's diagnoses draws the following conclusions. 1) Artificial neural network was a suitable tool to find to causes of damages by external pressure. 2) The environmental conditions improved the accuracy in reasoning. 3) The result of finding causes and evaluating soundness was helpful to suggest effective methods concerning tunnel maintenance.

  • PDF