• Title/Summary/Keyword: Accuracy comparison

Search Result 3,251, Processing Time 0.031 seconds

Intelligent Traffic Prediction by Multi-sensor Fusion using Multi-threaded Machine Learning

  • Aung, Swe Sw;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.430-439
    • /
    • 2016
  • Estimation and analysis of traffic jams plays a vital role in an intelligent transportation system and advances safety in the transportation system as well as mobility and optimization of environmental impact. For these reasons, many researchers currently mainly focus on the brilliant machine learning-based prediction approaches for traffic prediction systems. This paper primarily addresses the analysis and comparison of prediction accuracy between two machine learning algorithms: Naïve Bayes and K-Nearest Neighbor (K-NN). Based on the fact that optimized estimation accuracy of these methods mainly depends on a large amount of recounted data and that they require much time to compute the same function heuristically for each action, we propose an approach that applies multi-threading to these heuristic methods. It is obvious that the greater the amount of historical data, the more processing time is necessary. For a real-time system, operational response time is vital, and the proposed system also focuses on the time complexity cost as well as computational complexity. It is experimentally confirmed that K-NN does much better than Naïve Bayes, not only in prediction accuracy but also in processing time. Multi-threading-based K-NN could compute four times faster than classical K-NN, whereas multi-threading-based Naïve Bayes could process only twice as fast as classical Bayes.

Comparative analysis on digital models obtained by white light and blue LED optical scanners (백색광과 청색 LED 방식의 광학스캐너로 채득된 디지털 모형의 비교분석)

  • Choi, Seog-Soon;Kim, Jae-Hong;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze and compare the relative accuracy of digitized stone models of lower full arch, using two different scanning system. Methods: Replica stone models(N=20) were produced from lower arch acrylic model. Twenty digital models were made with the white light and blue LED($Medit^{(R)}$, Korea) scanner. Two-dimensional distance between the landmarks were measured on the Delcam $CopyCAD^{(R)}$(Delcam plc, UK). Independent samples t-test was applied for comparison of the groups. All statistical analyses were performed using the SPSS software package(Statistical Package for Social Sciences for Windows, version 12.0). Results: The absolute disagreement between measurements made directly on the two different scanner-based dental digital models was 0.02~0.04mm, and was not statistically significant(P>0.05). Conclusion: The precision of the blue LED optical scanner was comparable with the digitization device, and relative accuracy was similar. However, there still is room for improvement and further standardization of dental CAD technologies.

Development of Wafer Bond Integrity Inspection System Based on Laser Transmittance

  • Jang, Dong-Young;Ahn, Hyo-Sok;Mehdi, Sajadieh.S.M.;Lim, Young-Hwan;Hong, Seok-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • Among several critical topics in semiconductor fabrication technology, particles in addition to bonded surface contaminations are issues of great concerns. This study reports the development of a system which inspects wafer bond integrity by analyzing laser beam transmittance deviations and the variations of the intensity caused by the defect thickness. Since the speckling phenomenon exists inherently as long as the laser is used as an optical source and it degrades the inspection accuracy, speckle contrast is another obstacle to be conquered in this system. Consequently speckle contrast reduction methods were reviewed and among the all remedies have been established in the past 30 years the most adaptable solution for inline inspection system is applied. Simulation and subsequently design of experiments has been utilized to discover the best solution to improve irradiance distribution and detection accuracy. Comparison between simulation and experimental results has been done and it confirms an outstanding detection accuracy achievement. Bonded wafer inspection system has been developed and it is ready to be implemented in FAB in the near future.

Accuracy Analysis of Target TS Surveying and Non-target TS Surveying for Building Registration of Cadastral Map (지적도 건물등록을 위한 타켓 TS 측량과 무타켓 TS 측량의 정확도 분석)

  • Hong, Sung-Eon
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.123-134
    • /
    • 2007
  • The building boundary should be registered in the cadastral map for the protection of property using the expansion of the registration items in the cadastral record and the construction of 3D-cadastral information system. In this study, the efficiency of registering the building boundary was suggested by non-target TS survey through the comparison between target TS and non-target TS survey about an accuracy and efficiency. At the result of this research, the RMSE of target TS and non-target TS survey is the X; ${\pm}0.056m$ and Y; ${\pm}0.043m$. Therefore, non-target TS survey shows the high accuracy. Also, the non-target TS survey is more efficient cost on time and personnel than target TS.

  • PDF

A study on the accuracy of environmental reporting in korean nine dailies (국내 중앙 일간지 환경보도의 정확성에 관한 연구)

  • 안종주
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.52-54
    • /
    • 2002
  • Generally, inaccurate reports on environmental issues occur due to various factors. The purpose of this study was to find out a way to enhance accuracy of environmental reporting. So the reporters' career and college major had been compared to the accuracy of their articles. The by-lined environmental articles in nine dailies published in 1991 were checked. Results of this study were as follows. (1) Inaccuracy rate in environmental articles was 54.2%. Inaccuracies appeared 1.7 times per an article, while the average frequency of inaccuracies in overall articles was 0.9 time. (2) Errors in the articles consist of 65.8% of subjective inaccuracies and 34.2% of subjective inaccuracies. They derive from the false usage of terminology(15.8%), misquotation(14.5%), incorrect statistics(13%), exaggeration(13%), inaccurate title(7.9%), and false comparison(5%), (3) Inaccuracy rate by the type of articles was 66.7% in columns, 60% in feature stories, 54.5% in-depth stories, 40.9% in straight news, respectively. (4) Inaccuracy rate by the specific field was shown 71.4% in environmental impacts (5) According to the result of chi-square test analysis, there were no statistically significant differences of inaccuracy rate and of subjective, and objective, and objective inaccuracies relevant to the period of reporters' career covering environmental reporting and the nature of articles, and college major.

  • PDF

Numerical Simulation of High-Velocity Oblique Impacts of Yawed Long Rod Projectile Against Thin-Plate (Yaw 를 가진 긴 관통자와 경사판재의 고속충돌 수치해석)

  • Yoo, Yo-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1426-1437
    • /
    • 2002
  • Using the Lagrangian explicit time-integration finite element code NET3D which can treat three-dimensional high-velocity impact problems, oblique penetration processes of long rod projectile with yaw against thin plate are simulated. Through the comparison of simulation result with experimental result and other code's computational result, the adaptability and accuracy of NET3D is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. Main research contents to be handled in this paper include the followings. First, the accuracy and efficiency estimation of NET3D code result obtained from the oblique penetration simulations of long rod projectile with yaw against thin plate. Second, the effect of increasing impact velocity. Third, the effect of initial yaw for the spaced-plate target. Residual velocities, residual lengths, angular velocities, and final deformed configurations obtained from the NET3D computations are compared with the experimental results and other code's computational results such as Eulerian code MESA and Lagrangian code EPIC. As a result of comparisons, it has been found that NET3D code is superior to EPIC code and MESA code in the prediction capability of residual velocity and residual length of penetrator. The key features obtained from the experiment can be successfully reproduced through NET3D simulations. Throughout the study, the applicability and accuracy of NET3D as a metallic armor system design tool is verified.

Simulation of Run-out caused by Imperfection of Ball Bearing for High-speed Spindle Units

  • Zverev Igor Aexeevich;Eun In-Ung;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.3-7
    • /
    • 2006
  • For the purpose to improve and to automate designing of high-speed spindle units (SU's), we have developed the mathematical models and software to estimate SU performance characteristics, including the run-out of spindles running on ball bearings. In order to understand better the mechanics of high-speed SUs, the dynamic interaction of ball bearings and SU, and the influence of the bearing imperfections and SU's operational conditions on the run-out, we have carried out computer simulation and experimental studies. Through the study of SU's, we have found out that run-out of SU can vary drastically with variation of rpm. The influences of rotation speed and of accuracy parameters of bearings on the SU accuracy have the greatest importance. The influence of bearing preload has a secondary importance. Comparison of the results of these studies has demonstrated adequacy of the models and software developed to the real SU's.

A System for Thermal Distortion Analysis of Hull Structures by Solar Radiation (선체의 태양복사 열변형 해석을 위한 전처리시스템)

  • Ha, Yunsok;Lee, Donghoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.275-281
    • /
    • 2016
  • One of the most important things for quality to meet ship-production schedule is an accuracy control. A ship is assembled by welding through whole production process, so it is important that loss by correction will not happen as much as possible by using some engineering skills like reverse design, reverse setting and margin for thermal shrinkage. These efforts are a quite effective in fabrication stages, but not in erection stages. If a ship block which consists of common steel is exposed to directional solar radiation, its dimensional accuracy will change high as time by its thermal expansion coefficient. Therefore, the measuring work would be often done at dawn or evening even with having a very accurate device. In this study, an FE analysis method is developed to solve this problem. It can change measured data affected by solar thermal distortion to ones not, even though ship-block is measured at an arbitrary time. It will use the time when measuring, the direction of block and the weather record by satellites. It is confirmed by a comparison between measured data of a ship-block and the result by suggested analysis method. Furthermore, a pre-processing system is also developed for fast application of the suggested analysis method.

Comparison of Artificial Neural Networks for Low-Power ECG-Classification System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Electrocardiogram (ECG) classification has become an essential task of modern day wearable devices, and can be used to detect cardiovascular diseases. State-of-the-art Artificial Intelligence (AI)-based ECG classifiers have been designed using various artificial neural networks (ANNs). Despite their high accuracy, ANNs require significant computational resources and power. Herein, three different ANNs have been compared: multilayer perceptron (MLP), convolutional neural network (CNN), and spiking neural network (SNN) only for the ECG classification. The ANN model has been developed in Python and Theano, trained on a central processing unit (CPU) platform, and deployed on a PYNQ-Z2 FPGA board to validate the model using a Jupyter notebook. Meanwhile, the hardware accelerator is designed with Overlay, which is a hardware library on PYNQ. For classification, the MIT-BIH dataset obtained from the Physionet library is used. The resulting ANN system can accurately classify four ECG types: normal, atrial premature contraction, left bundle branch block, and premature ventricular contraction. The performance of the ECG classifier models is evaluated based on accuracy and power. Among the three AI algorithms, the SNN requires the lowest power consumption of 0.226 W on-chip, followed by MLP (1.677 W), and CNN (2.266 W). However, the highest accuracy is achieved by the CNN (95%), followed by MLP (76%) and SNN (90%).

Improvement of Image Processing Algorithm of High-Throughput Microscopy for Automated Counting of Asbestos Fibers (석면섬유 자동계수를 위한 고효율 현미경법의 영상처리 알고리즘 개선)

  • Cho, Myoung-Ock;Yoon, Seonghee;Han, Hwataik;Kim, Jung Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.3
    • /
    • pp.15-19
    • /
    • 2015
  • We developed a high-throughput microscopy (HTM) method which enabled us to replace a conventional phase contrast microscopy (PCM) method that has been used as a standard analytical method for airborne asbestos. We could obtain the concentration of airborne asbestos fibers under detection limit by automated image processing and analysis using HTM method. Here we propose an improved image processing algorithm with variable parameters to enhance the accuracy of the HTM analysis. Since the variable parameters that compensate the difference of the brightness are applied to the individual images in our new image processing method, it is possible to enhance the accuracy of the automatic image analysis method for sample slides with low asbestos concentration that caused errors in binary image processing. We demonstrated that enumeration of fibers by improved image processing algorithm remarkably enhanced the accuracy of HTM analysis in comparison with PCM. The improved HTM method can be a potential alternative to conventional PCM.