• Title/Summary/Keyword: Accuracy Rate

Search Result 3,448, Processing Time 0.033 seconds

Evaluation of Commercially Available Passive Samplers and Development of New Passive Samplers Part 2 : Development of New Passive Samplers (공기중 유기용제 농도 측정에 있어서 수동식 시료채취기의 성능평가 및 한국산 수동식 시료채취기의 개발에 관한 연구 제 2 부 : 한국산 수동식 시료채취기의 개발)

  • Paik, Nam Won;Kong, Sang Hui;Park, Jeong Im;Lee, Young Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.97-108
    • /
    • 1996
  • A new type of passive samplers were designed and produced by authors. After evaluating the quality of activated carbon by measuring recovery rate of organic vapors and steadiness of sampling rate, activated carbon with 30 - 35 mesh produced by Company S in Korea was selected. In each passive sampler, an amount of 400 mg of the activated carbon was filled in 25-mm cassette and covered by fixed screen (or wire screen with 100 mesh). In addition to the fixed screen, a wind screen (or wire screen with 300 mesh) was also attached at outer face. The sampling rate of the new Korean passive samplers was estimated Conclusions obtained in the study are as follows. 1. Sampling rates of the newly developed Korean passive samplers were affected by sampling time. For n-hexane, sampling rates of 15- and 60-minute samples were 70.92 and 37.45 ml/min, respectively. Sampling rate of both 200- and 450-minute samples was 25.96 ml/min. It is concluded that, when passive samplers are used for measuring organic vapors, samples be collected longer than 60 minutes. 2. Sampling rate of the passive samplers was also affected by airborne concentration of organic vapors. Lower sampling rates were determined at level of 1/2 threshold limit values (TLVs) recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). It is recommended that sampling rate of the passive samplers be obtained at site by measuring concentrations using both the NIOSH Method and passive samplers simultaneously. 3. When the passive samplers, which collected organic vapors, were exposed to clean air for five hours, there was no significant loss of organic vapors due to reverse diffusion. 4. When samples were stored at room temperature ($21.8{\pm}0.7^{\circ}C$) and refrigerator ($3.8{\pm}0.7^{\circ}C$), there was no significant difference in the accuracy of results. For trichloroethylene and n-hexane, accuracies were within 25 % at both temperatures until seven days. However, poor accuracy exceeding 25 % was indicated in toluene from the first day. It is recommended that samples be stored at freezing temperature below $0^{\circ}C$. 5. Sampling efficiency was significantly affected by direction of the passive samplers. Results of samplers facing wind and down, respectively, were compared. Lower amount of organic vapors were collected when the sampler was oriented down. It is recommended that, when air velocity is low in plants, the passive samplers be oriented to the wind. However, when air velocity is high, the passive samplers be oriented down.

  • PDF

Accuracy, Sensitivity and Specificity of Fine Needle Aspiration Biopsy for Salivary Gland Tumors: A Retrospective Study from 2006 to 2011

  • Silva, William P P;Stramandinoli-Zanicotti, Roberta T;Schussel, Juliana L;Ramos, Gyl H A;Ioshi, Sergio O;Sassi, Laurindo M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4973-4976
    • /
    • 2016
  • Objective: This article concerns evaluation of the sensitivity, specificity and accuracy of FNAB for pre-surgical diagnosis of benign and malignant lesions of major and minor salivary glands of patients treated in the Department of Head and Neck Surgery of Erasto Gartner Hospital. Methods: This retrospective study analyzed medical records from January 2006 to December 2011 from patients with salivary gland lesions who underwent preoperative FNAB and, after surgical excision of the lesion, histopathological examination. Results: The study had a cohort of 130 cases, but 34 cases (26.2%) were considered unsatisfactory regarding cytology analyses. Based on the data, sensitivity was 66.7% (6/9), specificity was 81.6% (71/87), accuracy was 80.2% (77/96), the positive predictive value was 66,7% (6/9) and the negative predictive value was 81.6% (71/87). Conclusion: Despite the high rate of inadequate samples obtained in the FNAB in this study the technique offers high specificity, accuracy and acceptable sensitivity.

Design and Implementation of Fire Detection System Using New Model Mixing

  • Gao, Gao;Lee, SangHyun
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.260-267
    • /
    • 2021
  • In this paper, we intend to use a new mixed model of YoloV5 and DeepSort. For fire detection, we want to increase the accuracy by automatically extracting the characteristics of the flame in the image from the training data and using it. In addition, the high false alarm rate, which is a problem of fire detection, is to be solved by using this new mixed model. To confirm the results of this paper, we tested indoors and outdoors, respectively. Looking at the indoor test results, the accuracy of YoloV5 was 75% at 253Frame and 77% at 527Frame, and the YoloV5+DeepSort model showed the same accuracy at 75% at 253 frames and 77% at 527 frames. However, it was confirmed that the smoke and fire detection errors that appeared in YoloV5 disappeared. In addition, as a result of outdoor testing, the YoloV5 model had an accuracy of 75% in detecting fire, but an error in detecting a human face as smoke appeared. However, as a result of applying the YoloV5+DeepSort model, it appeared the same as YoloV5 with an accuracy of 75%, but it was confirmed that the false positive phenomenon disappeared.

Tile Level Rate Control for High Efficiency Video Coding (HEVC) on Multi-core Platform

  • Marzuki, Ismail;Ahn, Yong-Jo;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.147-148
    • /
    • 2015
  • This paper proposes a tile level rate control for High Efficiency Video Coding (HEVC). The proposed tile level rate control is designed by considering the multi-core platform of tile in HEVC. The proposed tile level rate control allocates the number of bits for each tile based on the predetermined weight generated from the current picture level rate control. According to the experimental results, the proposed tile level rate control for HEVC on multi-core platform loses negligibly the bitrate accuracy about 0.07% on average over the reference software HM-14.0.

  • PDF

Effects of Cognitive Task on Stride Rate Variability by Walking Speeds (보행속도변화에 따른 인지 과제 수행이 보행수 변동성에 미치는 영향)

  • Choi, Jin-Seung;Yoo, Ji-Hye;Kim, Hyung-Shik;Chung, Soon-Cheol;Yi, Jeong-Han;Lee, Bong-Soo;Tack, Gye-Rae
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.323-331
    • /
    • 2006
  • The purpose of this study was to investigate the effect of performing a cognitive task during treadmill walking on the stride rate variability. Ten university students(age $24.0{\pm}0.25$, height $172{\pm}3.1cm$, weight $66{\pm}5.3kg$) were participated in dual task experiments which consist of both walking alone and walking with a cognitive task. Two-back task was selected for the cognitive task since it did not have learning effect during the experimental procedure.3D motion analysis system was used to measure subject's position data by changing walking speed with 4.8, 5.6, 6.4, 6.8, and 7.2 km/hr. Stride rate was calculated by the time between heel contact and heel contact. Accuracy rate of a cognitive task during walking, coefficient of variance, allometric scaling methods and Fano factor were used to estimated the stride rate variability. As the walking speed increased, accuracy rate decreased and the logarithmic value of Fano factor increased which showed the statistical difference. Thus it can be concluded that the gait control mechanism is distracted by the secondary attention focus which is the cognitive task ie. two-back task. Further study is needed to clarify this by increasing the number of subject and experiment time.

A Comparison of Nicotine Diffusive Sampler and XAD-4 Tube for Determination of Nicotine in ETS (공기 중 니코틴 포집에 있어 국산 확산포집기와 능동포집기의 비교 평가)

  • Kim, Hyo-Cher;Paik, Nam-Won;Lee, Kyung-Suk;Kim, Kyung-Ran;Kim, Won
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.485-491
    • /
    • 2006
  • It is widely known that Environmental Tobacco Smoke(ETS) is not good for health. ETS is composed of a lot of chemicals. So indicators are needed to evaluate the risk of ETS in air. One of the indicators is Nicotine. Active sampler has been used to measure nicotine concentration in air. The experiments were conducted to compare the active sampler method with diffusive sampler in exposure chamber and smoking areas, respectively. Sampling rate was 40.5 ml/min in exposure chamber. Experimental sampling rate (40.5 ml/min) was more than theoretical sampling rate (33.52 ml/min). And the higher was the concentration in air, the higher was experimental sampling rate. The average desorption, rate was 113.6%. The overall precision was 7.31 %. The overall accuracy was 18.96%, which were under NIOSH criteria. The average(GM) concentrations of nicotine by two sampling methods were $8.29{\mu}g/m^{3}$ (active sampler), $7.54{\mu}/m^{3}$ (diffusive sampler) in smoking area and smoking room. There was no regression between active sampler and diffusive sampler ($R^{2}=0.2397$). But slope, coefficient of determination was 1.017, 0.9292, respectively after removing outliers. And the slope (1.017) was close to the theoretical slope (1). In conclusion, this study indicated that diffusive sampler can be used to evaluate concentration of nicotine in air instead of active sampler.

1-D Model to Estimate Injection Rate for Diesel Injector using AMESim (디젤 인젝터 분사율 예측을 위한 AMESim 기반 1-D 모델 구축)

  • Lee, Jinwoo;Kim, Jaeheun;Kim, Kihyun;Moon, Seoksu;Kang, Jinsuk;Han, Sangwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, 1-D model-based engine development using virtual engine system is getting more attention than experimental-based engine development due to the advantages in time and cost. Injection rate profile is the one of the main parameters that determine the start and end of combustion. Therefore, it is essential to set up a sophisticated model to accurately predict the injection rate as starting point of virtual engine system. In this research, procedure of 1-D model setup based on AMESim is introduced to predict the dynamic behavior and injection rate of diesel injector. As a first step, detailed 3D cross-sectional drawing of the injector was achieved, which can be done with help of precision measurement system. Then an approximate AMESim model was provided based on the 3D drawing, which is composed of three part such as solenoid part, control chamber part and needle and nozzle orifice part. However, validation results in terms of total injection quantity showed some errors over the acceptable level. Therefore, experimental work including needle movement visualization, solenoid part analysis and flow characteristics of injector part was performed together to provide more accuracy of 1-D model. Finally, 1-D model with the accuracy of less than 10% of error compared with experimental result in terms of injection quantity and injection rate shape under normal temperature and single injection condition was established. Further work considering fuel temperature and multiple injection will be performed.

A Study on the Development of Overload Detecting Pad for Low Speed WIM System (저속 WIM 시스템용 과적검지 패드 개발에 관한 연구)

  • Lee, Choon-Man;Choi, Young-Ho;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.179-184
    • /
    • 2017
  • Recently, traffic accidents and damage on the highway have increased because of overloaded vehicles. The existing overload-detecting system has a low accuracy rate. An overload-detecting system using a weigh-in-motion (WIM) system has been developed to solve this problem. The WIM system can be used to detect overloaded vehicles by measuring the weight of the vehicles. The WIM system is divided into high-speed and low-speed types. The inaccuracy rate in the low-speed WIM system results mainly from the low response rate of the sensor when the velocity is moving at more than 20 km/h. In this study, a low-speed overload-detecting pad with a hydraulic structure using a WIM system was developed to make the system more accurate. The structural and formal analysis was carried out by using a finite element method (FEM) in order to analyze the structural stability and the extrusion velocity of the system. In addition, a static load test was performed to confirm the linearity and accuracy of the pad.

A Hybrid Search Method Based on the Artificial Bee Colony Algorithm (인공벌 군집 알고리즘을 기반으로 한 복합탐색법)

  • Lee, Su-Hang;Kim, Il-Hyun;Kim, Yong-Ho;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.213-217
    • /
    • 2014
  • A hybrid search method based on the artificial bee colony algorithm (ABCA) with harmony search (HS) is suggested for finding a global solution in the field of optimization. Three cases of the suggested algorithm were examined for improving the accuracy and convergence rate. The results showed that the case in which the harmony search was implemented with the onlooker phase in ABCA was the best among the three cases. Although the total computation time of the best case is a little bit longer than the original ABCA under the prescribed conditions, the global solution improved and the convergence rate was slightly faster than those of the ABCA. It is concluded that the suggested algorithm improves the accuracy and convergence rate, and it is expected that it can effectively be applied to optimization problems with many design variables and local solutions.

TIME SERIES PREDICTION USING INCREMENTAL REGRESSION

  • Kim, Sung-Hyun;Lee, Yong-Mi;Jin, Long;Chai, Duck-Jin;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.635-638
    • /
    • 2006
  • Regression of conventional prediction techniques in data mining uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to time series, the rate of prediction accuracy will be decreased. This paper proposes an incremental regression for time series prediction like typhoon track prediction. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of typhoon track prediction experiment are performed by the proposed technique IMLR(Incremental Multiple Linear Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

  • PDF