• Title/Summary/Keyword: Accuracy Pump

Search Result 126, Processing Time 0.024 seconds

Design and Implementation of Oil Pump Control Systems Driven by a Brushless DC Electric Motor (BLDC 모터로 구동되는 오일 펌프 제어 시스템의 설계 및 구현)

  • Kwak, Seong-Woo;Kim, Hyung-Soo;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • In this paper, we address the problem of designing and implementing an oil pump control system driven by a brushless DC (BLDC) motor. The proposed oil pump plays the role of providing fuel to the engine clutch and transmission of hybrid vehicles. Main consideration is given to enhancing response feature and accuracy of the oil pump by simplifying the controller that is driven by a BLDC motor under PWM voltage control, which is a standard control method for BLDC motors. The proposed control scheme also helps to increase efficiency and reliability of the oil pump system. To validate the performance of the proposed system, we conduct experiments on BLDC motor speed control and oil pump operations.

A Study on the Development of a Infusion Pump based on an Active Muscle Pump (능동형 근육펌프 구조의 수액 주입 펌프 개발에 관한 연구)

  • Lee, Jeong-Whan;Lee, Sang-Yeob;Lee, Jung-Eun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.443-449
    • /
    • 2022
  • In this study, in order to improve the disadvantages of the environmental error of the infusion set that performs infusion therapy in the existing clinical practice and to maximize the user's convenience by miniaturizing the existing infusion pump system, the structure of the muscle pump of the human vein was imitated. As a double check valve method, a method for preventing the backflow of fluid and discharging a constant fluid in one direction by external pressure was proposed. The proposed bio-mimic muscle pump uses a check valve that controls the flow of fluid in one direction and a silicone tube with elasticity, and a chamber is constructed. A peristaltic pump for applying intermittent pressure to the tube chamber was constructed using a multi-cam structure roller. In order to verify the performance of the proposed pump, optimization was performed while changing the number of multi-cam rollers and adjusting the speed of the roller driving motor, and the reproducibility of the instantaneous discharge amount and the continuous discharge amount of the pump was compared and tested. The performance of the muscle pump proposed in this study was verified through experiments that it can inject up to 1L of fluid within 12 hours, and that it is possible to inject the fluid with an accuracy of ±0.1ml. Real-time monitoring of the fluid injection volume through the bio-mimic muscle pump proposed in this study not only increases the convenience of the administrator, but also provides a precise fluid administration environment to more patients at a low cost, and additionally applies bubble detection and occlusion detection technology If so, it is believed that a safer medical environment can be provided to patients.

Development of the Dual Mode Syringe Type Infusion Pump (이중모드 주사기형 약물자동주입장치의 개발에 관한 연구)

  • Hong, S.Y.;Um, K.H.;Kim, I.K.;Lee, K.J.;Yoon, H.R.;Kim, U.K.;Um, D.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.317-318
    • /
    • 1998
  • The purpose of this study is to design and develop the circuit of the dual mode syringe pump. Syringe pump is used in intensive care unit, delivery room, pediatric room, operating theater and other fields of hospital at present. Normally the syringe pump delivers one medicine in one case, but in case of intensive care unit, it is necessary to deliver more than two kinds of medicines at a time. Therefore we have designed dual mode syringe pump. We used RISC type microcontroller, PIC17C44 as master controller, and PIC16C73 as slave cpu using for the low power consumption. The performance of system is evaluated by analysis of the linearity and accuracy which is the most important factors in application. While the proposed system shows a acceptable linearity and accuracy, a further research about reducing the errorr should be done.

  • PDF

Study on the Evaluation of Machining Characteristics of Trochoidal Profile by Turn-Mill (턴밀에서 트로코이드 치형 가공특성 평가에 관한 연구)

  • Lee, Choon-Man;Ahn, Jong Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • Various processes have been developed to improve the performance of the lubrication oil pump in a recent automobile industry. In particular, trochoidal profile has been widely used for the lubrication oil pump because it is easy to flow control and a lot of oil feed rate is obtained. Accuracy of the trochoidal profile as a core component of the lubricating oil pump affects the driving performance. So, it is necessary to develop efficient processing of the trochoidal profile. In this study, a machining process for the trochoidal profile is developed by turn-mill. Cutting force, surface roughness and tool wear were evaluated in accordance with machining conditions.

Measurement of Flow Ripple Generated by Balanced Vane Pumps in Automotive Power Steering Systems (동력조향용 압력평형형 베인펌프의 유량맥동 계측)

  • Kim, Do-Tae;Kim, Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.70-78
    • /
    • 2000
  • A balanced vane pump for the use of automotive power steering systems generates a flow ripple which is imposed upon the mean flow rate. The flow ripple interacts with the characteristics of the connected pipes, valves and steering gear in a complex manner to produce a pressure ripple, also known as fluid-borne noise. In order to reduce vibration level and produce quieter and more reliable power steering systems, it is important to measure the flow ripple produced by a pump with high accuracy and fast response. In this paper, the flow ripple generated by a vane pump in automotive power steering systems is measured by the remote instantaneous flow rate measurement method (RIFM) using hydraulic pipeline dynamics. In experiment, flow and pressure ripple wave forms are measured under various operating conditions. Also, the parameters affected upon the flow and pressure ripple are investigated by the frequency analysis.

  • PDF

A Study on the Development of Automatic Drawing System for Pump (펌프의 자동설계 시스템 개발에 관한 연구)

  • Kim, Ill-Soo;Park, Chang-Eun;Jeong, Young-Jae;Song, Chang-Jae;Kim, Hak-Hyoung;Park, Ju-Seog
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.333-337
    • /
    • 1999
  • The biggest challenge facing today manufacturing industry is better quality and high productivity. From an economic point of view, productivity is the most important parameter, as high productivity will reduce the cost. However, the customers of day are not only cost concerned, but also quality conscious. So high accuracy levels should also be achieved in the manufacturing process. This paper reports the development of a automatic design system based on AutoCAD program. 1'his work is composed of three section that are design of top down menu, impeller and casing for pump programed by AutoLISP language and runned Windows system. The developed system ultimately generates the design for a pump through AutoCAD program. In the design of the pump, it needs about 23 hours with an expert, but this system can be only 80 seconds without an expert.

  • PDF

Path Control with Energy-Saving Load-Sensing for a Cylinder-Load System Using Speed-Controlled Fixed Displacement Pump (속도제어-정용량 펌프를 사용하는 실린더-부하계의 에너지절약-부하감지형 경로제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.16-22
    • /
    • 2009
  • This paper deals with the issue of robust position tracking control and energy-saving control for a valve-controlled cylinder system using speed-controlled fixed displacement pump. The whole feedback control system is composed of a pair of interconnected subsystems, that is, valve-controlled cylinder system and load-sensing control system. From experiments it is shown that position tracking control in the load sensing control system can accomplish significant reduction in input energy to pump comparing to a conventional valve-controlled cylinder system, while exhibiting the same position tracking control accuracy.

  • PDF

Analysis on the frictional loss of a bent-axis type hydraulic piston pump (사축식 유압 펌프의 마찰손실 해석)

  • Hong, Yeh-Sun;Doh, Yoon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1548-1553
    • /
    • 2003
  • The design of a high speed axial piston pump for hydrostatic transmission systems requires specific understanding on where and how much its internal frictional and flow losses are generated. In this study, the frictional loss of a bentaxis type hydraulic piston pump was analyzed in order to find out which design factors influence the mechanical efficiency most significantly. To this end, the friction coefficients of the sliding components were experimentally identified by a specially constructed tribometer. Applying them to the three-dimensional dynamic model of the pump presented by Doh and Hong [1], the friction torques generated by the sliding components such as piston head , bearing and valve plate were theoretically computed. The accuracy of the computed results was confirmed by the comparison with the experimentally measured mechanical efficiency. In this paper, it is shown that the viscous friction on the valve plate and the drive shaft bearing is the primary sources of the frictional losses of the bent-axis type pump, while the friction forces on the piston contribute to them only slightly.

  • PDF

Study on Design of Hydraulic Pump with High Temperature and High Pressure Resistance for Cable-Stayed Bridge (케이블 사장교용 내고온·내고압 유압 펌프의 설계에 관한 연구)

  • Qin, Zhen;Wu, Yu-Ting;Kim, Dong-Seon;Kim, Sang-Bae;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.109-114
    • /
    • 2019
  • Hydraulic pumps are widely used in fields such as machinery manufacturing, engineering and construction. Although the research on hydraulic engineering is mature, it is still necessary to examine various performance aspects in detail for specific applications. This paper will focus on the hydraulic pump used in special construction machinery that needs high temperature and high pressure resistance. It will analyze the theoretical design, structure and thermal characteristics of the pump system using the Fundamentals of Engineering (FE) method, and will measure the key tolerance parameters of the hydraulic pump to ensure the accuracy of the machining. Through this research, a good design method for the linear reciprocating type of hydraulic pump can be summarized.

Prediction of Reactor Coolant Pump Performance Under Two-Phase Flow Conditions (이상유동시 원자로 냉각재 펌프의 성능 예측)

  • Lee, S.;Bang, Y.S.;Kim, H.J.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.179-189
    • /
    • 1994
  • A performance of reactor coolant pump in two-phase flow is examined using the pump geometric conditions and the performance of the pump in single-phase flow. Wall friction loss of the reactor coolant pump in single-phase flow is prdicted using the Truckenbrodt boundary layer theory, and the head loss in two-phase flow is predicted with calculated well friction loss and separation loss coefficients. The analysis results are compared with the Combustion Engineering pump test data. The effect of two-phase multiplier on the peak clad temperature in Loss-of-Coolant Accident is also examined using the RELAP5 and the results indicate the importance of its accuracy.

  • PDF