• Title/Summary/Keyword: Accumulated exhaust

Search Result 26, Processing Time 0.026 seconds

Accumulated Concentration of Cadmium in the Plant Organs of Arabidopsis thaliana Grown in the Soil Contaminated with Cadmium (카드뮴에 오염된 토양에서 생장한 애기장대의 식물기관에 축적된 카드뮴 농도)

  • Park, Jong-Bum
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1015-1021
    • /
    • 2008
  • This study was performed to examine the accumulated concentrations (conc.) of cadmium (Cd) in the organs of Arabidopsis thaliana grown in the soil with different conc. of Cd. The official standard conc. of Cd of pollutant exhaust notified by the Korean ministry of environment (0.1 mg/L) and ten times higher (1 mg/L) and fifty times higher (5 mg/L) conc. and no Cd in the soil as control were used for this investigation. The results showed that accumulated conc. of Cd in the stems of plant grown in the soil with different conc. (0.1, 1 and 5 mg/L) were increased 9%, 24% and 286% respectively, compared with normal plant stem. The accumulated conc. of Cd in the leafs of plant gown in the soil with official standard conc. and conc. ten times higher and conc. fifty times higher were increased 3%, 22% and 453%, respectively, compared with normal plant leaf. The accumulated conc. of Cd in the root of plant grown in the soil with 0.1 and 1 mg/L conc. of Cd were increased 6%, 19%, respectively, compared with normal plant root. However, it was observed about 84% of increased accumulation of the Cd in the root of plant, when highest (5 mg/L) conc. was used. The accumulated conc. of Cd in the different organs of Arabidopsis thaliana were increased according to increase of Cd conc. in the soil. When official standard conc. and ten times higher conc. of Cd were used, the accumulated conc. of Cd increased average 6%, 21%, respectively, compared with normal plant organ, and the accumulated conc. of Cd between leaf, stem and root were not significant. However, the accumulated conc. of Cd in the plant organs gown in the conc. fifty times higher were increased about 285%, compared with normal plant. In addition, the accumulated conc. of Cd in different organs of Arabidopsis thaliana exhibited wide differences between organs, that is, stem was increased 118% than root, leaf was increased 256%, 64% than root and stem, respectively. These results show that accumulated conc. of Cd in Arabidopsis thaliana with highest (5 mg/L) conc. of Cd in soil, were much higher in the leaf than the stem or root in proportion to the conc. of Cd contaminated within the soil.

Status of Welding Fume Concentration and Local exhaust Ventilation System at Welding Laboratory in Technical High School (공업고등학교 용접실습실의 용접흄 발생농도와 국소배기 실태)

  • Hwang, Sung-Hwan;Son, Bu-Soon;Jang, Bong-Ki;Park, Jong-An;Lee, Jong-Wha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This study was performed to evaluate a local exhaust ventilation system capability and welding fume concentration in welding laboratory at 5 technical high schools. Results of the study are as follows; 1. The personal exposure of welding fume in welding laboratory was measured. The geometric mean of 73 personal samples was $6.27mg/m^3$($3.85{\sim}9.88mg/m^3$), and 68.5% of these exceeded TLV of the Korea Ministry of Labor. 2. The geometric mean of welding fume at outside of booth was $2.27mg/m^3$($1.57{\sim}2.58mg/m^3$). All of measured concentrations were lower than TLV of the Korea Ministry of Labor. 3. Local exhaust ventilation system in welding laboratory could not remove hazardous substance effectively because of inappropriate canopy hood and absurd design. 4. The possibility of exposure risk was estimated to be high because of working point under breathing zone, misplacement of working table and insufficient supply of respiratory protector. 5. The mean values of capture velocity and transportation velocity of local exhaust ventilation system in welding laboratory were 0.38m/sec, 4.27m/sec respectively. These values were satisfied the guideline of the Korea Ministry of Labor. 6. The efficiency of performance of local ventilation system was anticipated to be decreased because of accumulated dust and alien substance on fan and duct.

  • PDF

Experimental Study on Estimation of Oxidation Rate of PM inside of Diesel Particulate Filter (DPF내 포집된 입자상 물질의 산화율 산출을 위한 실험적 연구)

  • Shim, Beomjoo;Park, Kyoungsuk;Jo, Kyuhee;Lee, Hyeongjun;Min, Byeongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • Conventional method to estimate mass of particulate matter accumulated in diesel particulate filter is to use pressure difference between upstream and downstream of the filter. Then measured pressure difference should be compared that of clean condition which is no particulate matter accumulated in DPF. During regeneration soot oxidation is also estimated by same method. This methodology, however, has demerit on accuracy because of pressure difference deviation of clean DPFs and pressure difference caused by non-carbon based PM which is different from that of caused by carbon based PM. This study suggests new methodology to estimate accumulated soot oxidation rate through exhaust gas characteristics during regeneration. Results, more high accuracy of soot oxidation was obtained by analysis of relationship between fuel mass and concentration of carbon dioxide and oxygen.

EffECTIVE PARTICULATES REDUCTION IN DIESEL ENGINES THROUGH THE USE OF FUEL CATALYSED PARTICULATE FILTERS

  • Vincent, M.-W.;Richards, P.-J.;Rogers, T.-J.
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • There is Increasing world-wide interest in diesel particulate filters (DPF) because of their proven effectiveness in reducing exhaust smoke and particulate emissions. Fine particulates have been linked to human health . DPF use requires a means to secure the bum-out of the accumulated soot, a process called regeneration. If this is not achieved, the engine cannot continue to operate. A number of techniques are available, but most are complex, expensive or have a high electrical demand. The use of fuel additives to catalyse soot bum-out potentially solves the problem of securing regeneration reliably and at low cost. Work on organo-metallic fuel additives has shown that certain metals combine to glove exceptional regeneration performance. Best performance was achieved with a combination of iron and strontium based compounds. Tests were carried out un a bed engine and on road vehicles, which demonstrated effective and reliable regeneration from a tow dose fuel additive, using a single passive DPF. No control valves, flow diverters. heaters or other devices were employed to assist regeneration. Independent particle size measurements showed that there were no harmful side effects from the use of the iron-strontium fuel additive.

Investigation on the Exhaust Emission Characteristics of GDI Vehicles According to Various Mileage (다양한 주행거리를 가지는 직접분사방식 가솔린 자동차의 배출특성에 관한 연구)

  • Kim, Hyung Jun;Keel, Ji Hoon;Kang, Gun Woo;Kim, Sun Moon;Kim, Jeong Soo
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.8-12
    • /
    • 2017
  • Recently, manufacture and sales of passenger car with GDI (Gasoline Direct injection) were dramatically increased in Korea. In this study, investigation on the exhaust emission characteristics of GDI vehicles according to mileage were conducted by using chassis dynamometer and emission analyzer. Test cars selected 5 types with G4FD engine (1600 cc) and emissions of total 14 vehicles analyzed. Measurement and evaluation on emissions (CO, NOx, NMOG, $CO_2$) characteristics of GDI vehicles with mileages from 40,000 to 80,000 km in certification driving cycle (CVS-75) were carried out in this study. It is revealed that emission results of all test cars shows below emission standard, NMOG emission value of about 80,000 km doubled that of 40,000 km and emission increased by accumulated mileage. Also, increasing pattern of NOx emissions shows when the vehicle mileages was increased and $CO_2$ emission increasing trend obviously do not show according to mileages.

Performance Evaluation of a Cylindrical Steam Reformer with Various Thermal Conditions (원통형 수증기 개질기의 열적조건 변화에 따른 개질성능 평가)

  • Han, Hun Sik;Kim, Seo Young;Karng, Sarng Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.269-274
    • /
    • 2014
  • The experimental performance evaluation of a cylindrical steam reformer with various thermal conditions has been conducted. The bottom space of the cylindrical reactor was packed with Ruthenium (Ru) catalyst. A three-segment furnace was installed to create the axially variable boundary temperature distribution. Six K-type thermocouples were inserted into the catalyst layer, and three exhaust ports were fabricated on the side wall along the flow direction. The exhausted gases at each port were analyzed by using gas chromatograph (GC) system. The experimental results showed that the reforming reaction occurs intensively in the upstream region and more hydrogen is obtained when the intake gas is sufficiently heated up through the enhanced steam reforming (SR) reaction. The axially increasing boundary temperature setup provided the maximally accumulated reforming efficiency of 74.8%, when the reactor was placed at the 3rd section of the furnace.

Fouling Reduction Characteristics of a Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery (연도가스 열회수용 순환유동층 열교환기의 오염저감특성)

  • 이금배;전용두
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.770-777
    • /
    • 2004
  • Fouling and cleaning tests are performed for a uniquely designed 7,000 ㎉/hr fluidized bed heat exchanger for exhaust gas heat recovery. Fuel rich condition is maintained in the combustor for a limited time period to generate soot that is to be deposited on the heat transfer surfaces (fouling) and 600 Um glass beads are circulated inside the heat exchanger system for cleaning and enhancing the heat transfer performance. According to the present experimental study, performance degradation mode could be monitored and the effect of particle circulation on the heat transfer improvement could be identified. Through the present study, it is demonstrated that circulating particles contribute not only to the fouling reduction in gas side, but also to the heat transfer enhancement of the unit, while other possible aging factors including water side corrosion seemed to contribute to the accumulated performance deterioration.

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • Kim, Gwang-Ju;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

Study on the high efficiency cleaning performance of the diesel vehicle DPF (디젤 자동차용 매연저감장치(DPF)의 클리닝 성능 고도화에 관한 연구)

  • Kim, Hyongjun;Chung, Jaewoo;Kang, Jungho;Lee, Jinwoo;Park, Jungsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Regulations for the exhaust gas of diesel vehicles are being strengthened every year. Recently, diesel emission regulations for HC, CO, NOx, and particulate matter (PM) have been subject to very strict standards. In the future, the regulation of PM is expected to become stricter. Accordingly, diesel particulate filters (DPFs) have been applied to most diesel vehicles for PM reduction. With increasing engine mileage, ash and soot from the engine exhaust gas accumulate inside the DPF. This accumulation can damage the DPF or degrade engine performance. Therefore, efficient cleaning of the DPF is critical for the maintenance of the engine. If the DPF is well managed through regular cleaning, it can improve the power and fuel economy of the engine and reduce maintenance costs. Therefore, this study was performed to develop a high-efficiency cleaning method for DPFs and an apparatus that can more effectively clean out the accumulated ash and soot.

Influence of Driving Routes and Seasonal Conditions to Real-driving NOx Emissions from Light Diesel Vehicles (주행 경로 및 계절의 변화가 소형 경유차의 실제 주행 시 질소산화물 배출량에 미치는 영향)

  • Lee, Taewoo;Kim, Jiyoung;Park, Junhong;Jeon, Sangzin;Lee, Jongtae;Kim, Jeongsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.148-156
    • /
    • 2014
  • The objective of this study is to compare NOx emissions from light duty diesel vehicles measured from on-road tests that conducted under various driving routes and seasonal conditions. We measured real-driving NOx emissions using PEMS, portable emissions measurement system, under the urban, rural and motorway road traffic conditions. On-road tests were repeated at summer, fall and winter season. The accumulated driving distance is more than 1,200 km per each vehicle. Route average NOx emission factors were compared among nine route-season combinations. The emission characteristics of each combinations were investigated using time series mass emission rates and vehicle operation-based emission rates and activities, which is based on U.S. EPA's MOVES model. Most concerned route-season combination is "urban road condition at summer", which shows two to eleven times higher NOx emissions than other combinations. The emission rates and activities under low speed operating conditions should be managed in order to reduce urban-summer NOx. From a NOx control strategy perspective, the exhaust gas recirculation, EGR, is observed to be properly operated under wide range of vehicle driving conditions in Euro-5 vehicles, even if the air conditioner turns on. In high power demanding conditions, the effect of overspeeding could be more critical than that of air conditioner activation.