• Title/Summary/Keyword: Accident consequence assessment

Search Result 80, Processing Time 0.028 seconds

A Development of System for Efficient Quantitative Risk Assessment on Natural Gas Supply Facilities (천연가스 공급시설에 대한 효율적 정량적 위험성 평가를 위한 시스템 구축과 적용)

  • Yoon, Ik-Keun;Oh, Shin-Kyu;Seo, Jae-Min;Lim, Dong-Yeon;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • While the natural gas supply industry has continuously been growing, its potential hazard has also risen since the natural gas facilities essentially require installations that carry highly flammable and pressurized gas close to the populated areas, posing a serious consequence of significant property damage as well as human casualties in the event of accident. Therefore Quantitative Risk Assessment (QAR) has been recognized as a appropriate method to reduce the risk as far as possible, considering the reality of unachievable zero-risk. However, it is hard to perform effective QRA on hundreds of gas facilities because of insufficient number of expert and long-term analysis. In this paper, we suggest a conceptual QRA system framework to support more efficient risk analysis in gas supply facilities. In this system, the experts make questionnaires and internal calculation formula needed in accident frequency/consequence analysis of the facility through pre-analysis on the point of analysis, called incident point, and general users locate the point on the map and input the value required by the questionnaire to obtain the risk. Ultimately, this is suggested based on the idea that the specialization is available in QRA analysis process and the validity of the system is verified through actual system construction and application.

Effect of Proof Test of Protective System on Securing Safety of Off-site Risk Assessment (보호시스템 보증시험 적용이 장외영향평가 안전성 확보에 미치는 영향)

  • Kim, Min-Su;Kim, Jae-Young;Lee, Eun-Byeol;Yoon, Junheon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.46-53
    • /
    • 2017
  • The risk is expressed as consequence of damage multiplied by likelihood of failure. The installation of a protective system reduces the risk by reducing the likelihood of failure at the facility. Also, the protective system has different effects on the likelihood of failure according to the proof test cycle. However, when assessing risks in the Off-site Risk Assessment (ORA) system, the variation in risk was not reflected according to the proof test cycle of protective system. This study was conducted to examine the need for proof test and the importance of cycle setting by applying periodic proof test of the protective system to ORA. The results showed that the likelihood of failure and the risk increased with longer proof test cycle. The risk of a two-yearly proof test was eight times greater than that of a three-month cycle. From the results, the protective system needs periodic proof test. Untested protective system for a long term cannot be reliable because it is more likely to be failed state when it is called upon to operate. In order to reduce the risk to an acceptable level, it is effective to differently set the proof test cycle according to the priority. This study suggested a more systematic and accurate risk analysis standard than ORA. This standard is expected to enable an acceptable level of risk management by systematically setting the priority and proof test cycle of the protective system. It is also expected to contribute to securing the safety of chemical facilities and at the same time, will lead to the development of the ORA system.

Towards Safety Based Design Procedure for Ships

  • Bakker, Marijn;Boonstra, Hotze;Engelhard, Wim;Daman, Bart
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • Present-day rules and regulations for the design and construction of ships are almost without exemption of a prescriptive and deterministic nature. Often it is argued that this situation is far from ideal; it does no right to the advances, which have been made during the past decades in engineering tools in marine technology, both in methodology and in computational power. Within IMO this has been realized for some time and has resulted in proposals to use Formal Safety Assessment(FSA) as a tool to improve and to modernize the rule making process. The present paper makes use of elements of the FSA methodology, but instead of working towards generic regulations or requirements, a Risk Assessment Approach, not unlike a 'safety case'; valid for a certain ship or type of ship is worked out. Delft University of Technology investigated the application of safely assessment procedures in ship design, in co-operation with Anthony Veder Shipowners and safety experts from Safely Service Center BV. The ship considered is a semi-pressurized-fully refrigerated LPG carrier. On the basis of the assumption that a major accident occurs, various accident, scenarios were considered and assessed, which would impair the safety of the carrier. In a so-called Risk Matrix, in which accident frequencies versus the consequence of the scenarios are depicted, the calculated risks all appeared lo be in the ALARP('as low as reasonable practicable') region. A number of design alternatives were compared, both on safety merits and cost-effectiveness. The experience gained with this scenario-based approach will be used to establish a set of general requirements for safety assessment techniques in ship design. In the view that assessment results will be most probably presented in a quasi-quantified manner, the requirements are concerned with uniformity of both the safety assessment. These requirements make it possible that valid comparison between various assessment studies can be made. Safety assessment, founded on these requirements, provides a validated and helpful source of data during the coming years, and provides naval architects and engineers with tools experience and data for safety assessment procedures in ship design. However a lot of effort has to be spent in order to make the methods applicable in day-to-day practice.

  • PDF

A Study on Consequence Analysis of LNG/LPG/Gasoline Station (LNG/LPG/가솔린 Station의 사고피해영향평가 비교)

  • Yoo, Jin-Hwan;Kim, Bum-Su;Lee, Heon-Seok;Ko, Euy-Seok;Lee, Gi-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.54-60
    • /
    • 2009
  • The advancement of industry have increased domestic energy demands and energy facilities such as storage facility, compressed gas pipe, station, and tank lorry. Also, concern about environment have diversified energy source to clean energy such as LNG. In these major energy facilities, major accident can happen to result in fire, explosion, toxic release and etc. In addition, it may cause chain accidents to the adjacent energy facilities. In this research, safety assessment was performed through the consequence analysis of LPG liquefied petroleum gas) station, gasoline station and LNG(liquiefied natural gas) station. The obtained result will be helpful to make a safety guideline of the LPG/LNG station built adjacent to the gasoline station.

  • PDF

Risk Analysis System in Fuzzy Set Theory (퍼지 집합론을 이용한 위험분석 시스템)

  • 홍상우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.29-41
    • /
    • 1990
  • An assessment of risk in industrial and urban environments is essential in the prevention of accident and in the analysis of situations which are hazardous to public health and safety. The risk imposed by a particular hazard increases with the likelihood of occurence of the event, the exposure and the possible consequence of that event. In a traditional approach, the calculation of a quantitative value of risk is usually based on an assignment of numerical values of each of the risk factors. Then the product of the values of likelihood, exposure and consequences called risk score is derived. However vagueness and imprecision in mathematical quantification of risk are equated with fuzziness rather than randomness. In this paper, a fuzzy set theoretic approach to risk analysis is proposed as an alternative to the techniques currently used in the area of systems safety. Then the concept of risk evaluation using linguistic representation of the likelihood, exposure and consequences is introduced. A risk assessment model using approximate reasoning technique based on fuzzy logic is presented to drive fuzzy values of risk and numerical example for risk analysis is also presented to illustrate the results.

  • PDF

Offsite Risk Assessment of Incidents in a Semiconductor Facility (반도체 산업설비의 사고시 사업장외에 미치는 영향평가)

  • Yoon, Yeo Hong;Park, Kyoshik;Kim, Taeok;Shin, Dongmin
    • Korean Journal of Hazardous Materials
    • /
    • v.3 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • Semiconductor industry has large number of chemical inventory and is easily exposed to chemical release incidents. Toxic release is one of the most interested area in evaluating consequence to the vicinity of industry facilities handling hazardous materials. Hydrofluoric acid is one of the typical chemical used in semiconductor facility and is selected and toxic release is evaluated to assess the risk impacted to its off-site. Accident scenarios were listed using process safety information. The scenarios having effect to the off-site were selected and assessed further according to guideline provided by Korea government. Worst case and alternative scenarios including other interested scenarios were evaluated using ALOHA. Each evaluated scenario was assessed further considering countermeasures. The results showed that the facility handling hydroflooric acid is safe enough and needed no further protections at the moment.

Development and Selection of Accident Scenarios for Risk Assessment in HF Charging Process (HF 충진 공정의 위험성 평가를 위한 가상사고 시나리오 발굴 및 선정)

  • Jang, Chang-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.26-32
    • /
    • 2013
  • The best way to prevent major occupational accidents is prohibiting use of hazardous substances such as flammable gas, toxic gas whereas using alternative substances that ensured safety. but if there are no economic efficiency and substituting technologies of alternative substances, the best way is preparing to prevent accidents thoroughly. Therefore, this study has developed and selected release scenarios to use and apply for consequence analysis and emergency action plan for HF charging process of chemical plants that have HF release accidents and high probability of release accidents.

A Study on Safety Improvement for Packaged Hydrogen Refueling Station by Risk Assessment (위험성 평가를 통한 패키지형 수소충전소 안전성 향상에 관한 연구)

  • KANG, SEUNGKYU;HUH, YUNSIL;MOON, JONGSAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.635-641
    • /
    • 2017
  • In this study, the components of packaged hydrogen filling station were analyzed and risk factors were examined. Risk scenarios were constructed and quantitative risk assessments were conducted through a general risk assessment program (phast/safeti 7.2). Through the risk assessment, the range of damage according to accident scenarios and the ranking that affects the damage according to the risk factors are listed, and scope of damage and countermeasures for risk reduction are provided. The quantitative risk assessment result of the packaged hydrogen filling station through this task will be used as the basic data for improving the safety of the packaged filling system and preparing safety standards.

A Study of Damage Assessment Caused by Hydrogen Gas Leak in Tube Trailer Storage Facilities (수소 Tube Trailer 저장시설에서의 수소가스 누출에 따른 사고피해예측에 관한 연구)

  • Kim, Jong-Rak;Hwang, Seong-Min;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.32-38
    • /
    • 2011
  • As the using rate of an explosive gas has been increased in the industrial site, the regional residents adjacent to the site as well as the site workers have frequently fallen into a dangerous situation. Damage caused by accident in the process using hydrogen gas is not confined only to the relevant process, but also is linked to a large scale of fire or explosion and it bring about heavy casualties. Therefore, personnel in charge should investigate the kinds and causes of the accident, forecast the scale of damage and also, shall establish and manage safety countermeasures. We, in Anti-Calamity Research Center, forecasted the scope of danger if break out a fire or/and explosion in hydrogen gas facilities of MLCC firing process. We selected piping leak accident, which is the most frequent accident case based on an actual analysis of accident data occurred. We select and apply piping leak accident which is the most frequent case based on an actual accident data as a model of damage forecasting scenario caused by accident. A jet fire breaks out if hydrogen gas leaks through pipe size of 10 mm ${\Phi}$ under pressure of 120 bar, and in case of $4kw/m^2$ of radiation level, the radiation heat can produce an effect on up to distance of maximum 12.45 meter. Herein, we are going to recommend safety security and countermeasures for improvement through forecasting of accident damages.

Risk Assessment Using RBI for Internal Corroded Pipelines in CDU Desulfurization Process (CDU 내 탈황공정의 내부부식 된 파이프라인을 대상으로 한 RBI기법을 이용한 위험성 평가)

  • Lim, Donghui;Jeong, Taehun;Lee, In-Dong;Jung, In Hee;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.33-39
    • /
    • 2019
  • in 2010s, many factories are operating without any safety guarantees due to the aging process. Although it is difficult to fundamentally solve the problem of aging process and equipment, Prevent risk by risk assessment in advance. This study targets the corrosion caused by sulfur in the piping in the CDU(Crude Distillation Unit) process desulfurization equipment and conducts the risk assessment by RBI(Risk Based Inspection) referring to API RP 581. RBI expresses the risk by combining frequency and consequence, and creates a risk matrix based on these expression. In this study, the hole size of the pipe was selected as Small and Medium, and the sensitivity of the frequency was selected as 'Low'. You can refer to the Risk Matrix created from the standard to evaluate the risk of corrosion of sulfur from pipes in the piping and to plan future accident prevention. Similarly, prevention of aging in a similar way can prevent large and small incidents that are not visible.