• Title/Summary/Keyword: Accident Prediction Model

Search Result 222, Processing Time 0.02 seconds

Prediction on the Accident Reduction Effects of the Red Light Cameras Installation (무인신호위반단속장비 설치에 따른 사고감소효과 예측)

  • Kim, Tae Young;Beak, Tae Hun;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.67-73
    • /
    • 2012
  • PURPOSES : This study deals with the effects on the installation of RLC(Red Light Camera). The objective is to analyze the effects of accident reduction after the installation of RLC. METHODS : In pursuing the above, the study uses the 703 accident data occurred at the 64 intersections which RLC are installed or not installed. RESULTS : The main results are as follows. First, Poisson RLC accident model developed in this study is analyzed to be statistically significant. Second, using the above developed model, 33 intersections among 40 intersections are predicted to have the decreasing effects of accidents after the installation of RLC. Finally, the reduction effects are analyzed to be affected by ADT and the number of left-turn lane. CONCLUSIONS : This study is expected to improve the efficiency of RLC and to help in decision-making of RLC installation.

Development of Accident Modification Factors for Road Design Safety Evaluation Algorithm of Rural Intersections (지방부 교차로의 도로설계 안전성 판단 알고리즘 구축을 위한 AMF 개발 (신호교차로를 중심으로))

  • Kim, Eung-Cheol;Lee, Dong-Min;Choe, Eun-Jin;Kim, Do-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.91-102
    • /
    • 2009
  • A traffic accident prediction model developed using various design variables(road design variables, geometric variables, and traffic environmental variables) is one of the most important factors to safety design evaluation system for roads. However, statistical accident models have a crucial problem not applicable for all intersections. To make up this problem, this study developed AMFs(Accident Modification Factors) through statistical modeling methods, historical accident databases, judgment from traffic experts, and literature review by considering design variable's characteristics, traffic accident rates, and traffic accident frequency. AMFs developed in this study include exclusive left-turn lane, exclusive right-turn lane, sight distance, and intersection angle. Predictabilities of the developed AMFs and the existing accident prediction models are compared with real accident historical data. The results showed that performances of the developed AMFs are superior to the existing statistical accident prediction models. These findings show that AMFs should be considered as a important process to develop safety design evaluation algorithms. Additionally, AMFs could be used as an index that can judge the impact of corresponding design variables on accidents in rural intersections.

The prediction Models for Clearance Times for the unexpected Incidences According to Traffic Accident Classifications in Highway (고속도로 사고등급별 돌발상황 처리시간 예측모형 및 의사결정나무 개발)

  • Ha, Oh-Keun;Park, Dong-Joo;Won, Jai-Mu;Jung, Chul-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.101-110
    • /
    • 2010
  • In this study, a prediction model for incident reaction time was developed so that we can cope with the increasing demand for information related to the accident reaction time. For this, the time for dealing with accidents and dependent variables were classified into incident grade, A, B, and C. Then, fifteen independent variables including traffic volume, number of accident-related vehicles and the accidents time zone were utilized. As a result, traffic volume, possibility of including heavy vehicles, and an accident time zone were found as important variables. The results showed that the model has some degree of explanatory power. In addition, when the CHAID Technique was applied, the Answer Tree was constructed based on the variables included in the prediction model for incident reaction time. Using the developed Answer Tree model, accidents firstly were classified into grades A, B, and C. In the secondary classification, they were grouped according to the traffic volume. This study is expected to make a contribution to provide expressway users with quicker and more effective traffic information through the prediction model for incident reaction time and the Answer Tree, when incidents happen on expressway

Social Safety Systems through Big Data Analysis of Public Data (공공 데이터의 빅데이터 분석을 통한 사회 안전망 시스템)

  • Lee, Sun Yui;Jung, Jun Hee;Cha, Gyeong Hyeon;Son, Ki Jun;Kim, Sang Ji;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.77-82
    • /
    • 2015
  • This paper proposed an accident prediction model in order to prevent accidents in mountain areas using a big data analysis. Data of accidents in mountain areas are shown as graphs. We have analyzed cases: the number of accidents per year, day of week, time of day to find patterns of the negligent accident in mountain areas. The proposed prediction model consists of weighted variables of the accident in mountain through visualized big data analysis. The model of danger index performance is demonstrated by showing accident-prone areas with weighted variables.

PREDICTION OF HYDROGEN CONCENTRATION IN CONTAINMENT DURING SEVERE ACCIDENTS USING FUZZY NEURAL NETWORK

  • KIM, DONG YEONG;KIM, JU HYUN;YOO, KWAE HWAN;NA, MAN GYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.139-147
    • /
    • 2015
  • Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

Socio-economic Indicators Based Relative Comparison Methodology of National Occupational Accident Fatality Rates Using Machine Learning (머신러닝을 활용한 사회 · 경제지표 기반 산재 사고사망률 상대비교 방법론)

  • Kyunghun, Kim;Sudong, Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.41-47
    • /
    • 2022
  • A reliable prediction model of national occupational accident fatality rate can be used to evaluate level of safety and health protection for workers in a country. Moreover, the socio-economic aspects of occupational accidents can be identified through interpretation of a well-organized prediction model. In this paper, we propose a machine learning based relative comparison methods to predict and interpret a national occupational accident fatality rate based on socio-economic indicators. First, we collected 29 years of the relevant data from 11 developed countries. Second, we applied 4 types of machine learning regression models and evaluate their performance. Third, we interpret the contribution of each input variable using Shapley Additive Explanations(SHAP). As a result, Gradient Boosting Regressor showed the best predictive performance. We found that different patterns exist across countries in accordance with different socio-economic variables and occupational accident fatality rate.

Developing An Accident Prediction Model for Railroad-Highway Grade Crossings (철도건널목의 사고예측모형 개발에 관한 연구)

  • 강승규
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.2
    • /
    • pp.43-58
    • /
    • 1995
  • This paper discusses some of the results of investigation of railroad-highway grade crossing accidents and accident-related inventory information that was collected from the Pusan District Office of the Korean National Railroads. Established statistical techniques were applied to tabulated data to obtain an accident prediction equation that estimates the expected probability of accidents at each crossing under various grade crossing situations. It was found that the most significant factor that influences the railroad crossing accidents was flagger. The other factors were train and traffic volumes, number of tracks. crossing angle, maximum timetable train speed, algebraic grade difference, and lighting facility. No significant effects was identified with railroad crossing gates. The results of the analysis and the uses of the prediction equation for the development of warrants for safety improvements are also discussed.

  • PDF

Development of Machine Learning-based Construction Accident Prediction Model Using Structured and Unstructured Data of Construction Sites (건설현장 정형·비정형데이터를 활용한 기계학습 기반의 건설재해 예측 모델 개발)

  • Cho, Mingeon;Lee, Donghwan;Park, Jooyoung;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.127-134
    • /
    • 2022
  • Recently, policies and research to prevent increasing construction accidents have been actively conducted in the domestic construction industry. In previous studies, the prediction model developed to prevent construction accidents mainly used only structured data, so various characteristics of construction sites are not sufficiently considered. Therefore, in this study, we developed a machine learning-based construction accident prediction model that enables the characteristics of construction sites to be considered sufficiently by using both structured and text-type unstructured data. In this study, 6,826 cases of construction accident data were collected from the Construction Safety Management Integrated Information (CSI) for machine learning. The Decision forest algorithm and the BERT language model were used to train structured and unstructured data respectively. As a result of analysis using both types of data, it was confirmed that the prediction accuracy was 95.41 %, which is improved by about 20 % compared to the case of using only structured data. Conclusively, the performance of the predictive model was effectively improved by using the unstructured data together, and construction accidents can be expected to be reduced through more accurate prediction.

Development of Traffic Accident Prediction Models Considering Variations of the Future Volume in Urban Areas (신설 도시부 도로의 장래 교통량 변화를 반영한 교통사고 예측모형 개발)

  • Lee, Soo-Beom;Hong, Da-Hee
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.125-136
    • /
    • 2005
  • The current traffic accident reduction procedure in economic feasibility study does not consider the characteristics of road and V/C ratio. For solving this problem, this paper suggests methods to be able to evaluate safety of each road in construction and improvement through developing accident Prediction model in reflecting V/C ratio Per road types and traffic characters. In this paper as primary process, model is made by tke object of urban roads. Most of all, factor effecting on accident relying on road types is selected. At this point, selecting criteria chooses data obtained from road planning procedure, traffic volume, existence or non-existence of median barrier, and the number of crossing point, of connecting road. and of traffic signals. As a result of analyzing between each factor and accident. all appear to have relatives at a significant level of statistics. In this research, models are classified as 4-categorized classes according to roads and V/C ratio and each of models draws accident predicting model through Poisson regression along with verifying real situation data. The results of verifying models come out relatively satisfactory estimation against real traffic data. In this paper, traffic accident prediction is possible caused by road's physical characters by developing accident predicting model per road types resulted in V/C ratio and this result is inferred to be used on predicting accident cost when road construction and improvement are performed. Because data using this paper are limited in only province of Jeollabuk-Do, this paper has a limitation of revealing standards of all regions (nation).

Development for City Bus Dirver's Accident Occurrence Prediction Model Based on Digital Tachometer Records (디지털 운행기록에 근거한 시내버스 운전자의 사고발생 예측모형 개발)

  • Kim, Jung-yeul;Kum, Ki-jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 2016
  • This study aims to develop a model by which city bus drivers who are likely to cause an accident can be figured out based on the information about their actual driving records. For this purpose, from the information about the actual driving records of the drivers who have caused an accident and those who have not caused any, significance variables related to traffic accidents are drawn, and the accuracy between models is compared for the classification models developed, applying a discriminant analysis and logistic regression analysis. In addition, the developed models are applied to the data on other drivers' driving records to verify the accuracy of the models. As a result of developing a model for the classification of drivers who are likely to cause an accident, when deceleration ($X_{deceleration}$) and acceleration to the right ($Y_{right}$) are simultaneously in action, this variable was drawn as the optimal factor variable of the classification of drivers who had caused an accident, and the prediction model by discriminant analysis classified drivers who had caused an accident at a rate up to 62.8%, and the prediction model by logistic regression analysis could classify those who had caused an accident at a rate up to 76.7%. In addition, as a result of the verification of model predictive power of the models showed an accuracy rate of 84.1%.