• Title/Summary/Keyword: Access Node

Search Result 672, Processing Time 0.031 seconds

Extended Pairing Heap Algorithms Considering Cache Effect (캐쉬 효과를 고려한 확장된 Pairing Heap 알고리즘)

  • 정균락;김경훈
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.250-257
    • /
    • 2003
  • As the memory access time becomes slower relative to the fast processor speed, most systems use cache memory to reduce the gap. The cache performance has an increasingly large impact on the performance of algorithms. Blocking is the well known method to utilize cache and has shown good results in multiplying matrices and search trees like d-heap. But if we use blocking in the data structures which require rotation during insertion or deletion, the execution time increases as the data movements between blocks are necessary. In this paper, we have proposed the extended pairing heap algorithms using block node and shown by experiments that our structure is superior Also in case of using block node, we use less memory space as the number of pointers decreases.

A Cache-Conscious Compression Index Based on the Level of Compression Locality (압축 지역성 수준에 기반한 캐쉬 인식 압축 색인)

  • Kim, Won-Sik;Yoo, Jae-Jun;Lee, Jin-Soo;Han, Wook-Shin
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1023-1043
    • /
    • 2010
  • As main memory get cheaper, it becomes increasingly affordable to load entire index of DBMS and to access the index. Since speed gap between CPU and main memory is growing bigger, many researches to reduce a cost of main memory access are under the progress. As one of those, cache conscious trees can reduce the cost of main memory access. Since cache conscious trees reduce the number of cache miss by compressing data in node, cache conscious trees can reduce the cost of main memory. Existing cache conscious trees use only fixed one compression technique without consideration of properties of data in node. First, this paper proposes the DC-tree that uses various compression techniques and change data layout in a node according to properties of data in order to reduce cache miss. Second, this paper proposes the level of compression locality that describes properties of data in node by formula. Third, this paper proposes Forced Partial Decomposition (FPD) that reduces the nutter of cache miss. DC-trees outperform 1.7X than B+-tree, 1.5X than simple prefix B+-tree, and 1.3X than pkB-tree, in terms of the number of cache misses. Since proposed DC-trees can be adopted in commercial main memory database system, we believe that DC-trees are practical result.

An Investigation into the Applicability of Node.js as a Platform for implementing Mobile Web Apps. (모바일 웹 어플리케이션을 구현하기 위한 Node.js 파일에 대한 조사)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.286-289
    • /
    • 2016
  • In this paper, we propose an architecture that affords mobile app based on nomadic smartphone using not only mobile cloud computing- architecture but also a dedicated web platform called Node.js built-in with the asynchronous, Nonblocking, Event-Driven programming paradigm. Furthermore, the design of the proposed architecture takes document oriented database known as MongoDB to deal with the large amount of data transmit by users of mobile web access application. The Node.js aims to give the programmers the tools needed to solves the large number of concurrent connections problem. We demonstrate the effectiveness of the proposed architecture by implementing an android application responsible of real time analysis by using a vehicle to applications smart phones interface approach that considers the smartphones to acts as a remote users which passes driver inputs and delivers output from external applications.

  • PDF

Analysis of Energy Consumption and Sleeping Protocols in PHY-MAC for UWB Networks

  • Khan, M.A.;Parvez, A.Al;Hoque, M.E.;An, Xizhi;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12B
    • /
    • pp.1028-1036
    • /
    • 2006
  • Energy conservation is an important issue in wireless networks, especially for self-organized, low power, low data-rate impulse-radio ultra-wideband (IR-UWB) networks, where every node is a battery-driven device. To conserve energy, it is necessary to turn node into sleep state when no data exist. This paper addresses the energy consumption analysis of Direct-Sequence (DS) versus Time-Hopping (TH) multiple accesses and two kinds of sleeping protocols (slotted and unslotted) in PHY-MAC for Un networks. We introduce an analytical model for energy consumption or a node in both TH and DS multiple accesses and evaluate the energy consumption comparison between them and also the performance of the proposed sleeping protocols. Simulation results show that the energy consumption per packet of DS case is less than TH case and for slotted sleeping is less than that of unslotted one for bursty load case, but with respect to the load access delay unslotted one consumes less energy, that maximize node lifetime.

Comparison Study of Helper Node Selection Schemes of Cooperative Communications at Ad Hoc Networks (애드혹 네트워크에서 협력통신을 위한 도움노드 선정방법 비교연구)

  • Jang, Jae-Shin
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.69-78
    • /
    • 2012
  • In this paper, a study on finding an appropriate helper node that can help increase effective frame transmission rate for cooperative communications at ad hoc networks is carried out. Those researches from reference use the reactive helper node selection mechanism which starts its role after exchanging RTS and CTS frames between source and destination nodes, and are implemented into our simulator for performance comparison. System throughput and average channel access delay are used for performance measures and all communicating nodes are assumed to move independently within the communication range. It is anticipated that this research result can be used as basic information for designing a new efficient helper node selection scheme.

An Index Structure for Efficient X-Path Processing on S-XML Data (S-XML 데이터의 효율적인 X-Path 처리를 위한 색인 구조)

  • Zhang, Gi;Jang, Yong-Il;Park, Soon-Young;Oh, Young-Hwan;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.51-54
    • /
    • 2005
  • This paper proposes an index structure which is used to process X-Path on S-XML data. There are many previous index structures based on tree structure for X-Path processing. Because of general tree index's top-down query fashion, the unnecessary node traversal makes heavy access and decreases the query processing performance. And both of the two query types for X-Path called single-path query and branching query need to be supported in proposed index structure. This method uses a combination of path summary and the node indexing. First, it manages hashing on hierarchy elements which are presented in tag in S-XML. Second, array blocks named path summary array is created in each node of hashing to store the path information. The X-Path processing finds the tag element using hashing and checks array blocks in each node to determine the path of query's result. Based on this structure, it supports both single-path query and branching path query and improves the X-Path processing performance.

  • PDF

Neighbor Cooperation Based In-Network Caching for Content-Centric Networking

  • Luo, Xi;An, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2398-2415
    • /
    • 2017
  • Content-Centric Networking (CCN) is a new Internet architecture with routing and caching centered on contents. Through its receiver-driven and connectionless communication model, CCN natively supports the seamless mobility of nodes and scalable content acquisition. In-network caching is one of the core technologies in CCN, and the research of efficient caching scheme becomes increasingly attractive. To address the problem of unbalanced cache load distribution in some existing caching strategies, this paper presents a neighbor cooperation based in-network caching scheme. In this scheme, the node with the highest betweenness centrality in the content delivery path is selected as the central caching node and the area of its ego network is selected as the caching area. When the caching node has no sufficient resource, part of its cached contents will be picked out and transferred to the appropriate neighbor by comprehensively considering the factors, such as available node cache, cache replacement rate and link stability between nodes. Simulation results show that our scheme can effectively enhance the utilization of cache resources and improve cache hit rate and average access cost.

Biologically Inspired Node Scheduling Control for Wireless Sensor Networks

  • Byun, Heejung;Son, Sugook;Yang, Soomi
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.506-516
    • /
    • 2015
  • Wireless sensor networks (WSNs) are generally comprised of densely deployed sensor nodes, which results in highly redundant sensor data transmissions and energy waste. Since the sensor nodes depend on batteries for energy, previous studies have focused on designing energy-efficient medium access control (MAC) protocols to extend the network lifetime. However, the energy-efficient protocols induce an extra end-to-end delay, and therefore recent increase in focus on WSNs has led to timely and reliable communication protocols for mission-critical applications. In this paper, we propose an energy efficient and delay guaranteeing node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique.With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

A New Framework of 6lowpan node for Neighboring Communication with Healthcare Monitoring Applications

  • Singh, Dhananjay;Lee, Hoon-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.281-286
    • /
    • 2009
  • The proposed technique uses cyclic frame structure, where three periods such as beacon period (BP), mesh contention access period (MCAP) and slotted period (SP) are in a data frame. This paper studies on a mechanism to allow communication nodes (6lowpan) in a PAN with different logical channel for global healthcare applications monitoring technology. The proposed super framework structure system has installed 6lowpan sensor nodes to communicate with each other. The basic idea is to time share logical channels to perform 6lowpan sensor node. The concept of 6lowpan sensor node and various biomedical sensors fixed on the patient BAN (Body Area Network) for monitoring health condition. In PAN (hospital area), has fixed gateways that received biomedical data from 6lowpan (patient). Each 6lowpan sensor node (patient) has IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analyze patient data from all over the globe by the internet service provider, with specific equipments i.e. cell phone, PDA, note book. The NS-2.33 result shows the performance of data transmission delay and data delivery ratio in the case of hop count in a PAN (Personal Area Networks).

  • PDF

Performance Evaluation of k-means and k-medoids in WSN Routing Protocols

  • SeaYoung, Park;Dai Yeol, Yun;Chi-Gon, Hwang;Daesung, Lee
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.259-264
    • /
    • 2022
  • In wireless sensor networks, sensor nodes are often deployed in large numbers in places that are difficult for humans to access. However, the energy of the sensor node is limited. Therefore, one of the most important considerations when designing routing protocols in wireless sensor networks is minimizing the energy consumption of each sensor node. When the energy of a wireless sensor node is exhausted, the node can no longer be used. Various protocols are being designed to minimize energy consumption and maintain long-term network life. Therefore, we proposed KOCED, an optimal cluster K-means algorithm that considers the distances between cluster centers, nodes, and residual energies. I would like to perform a performance evaluation on the KOCED protocol. This is a study for energy efficiency and validation. The purpose of this study is to present performance evaluation factors by comparing the K-means algorithm and the K-medoids algorithm, one of the recently introduced machine learning techniques, with the KOCED protocol.