• Title/Summary/Keyword: Accelerometer array

Search Result 18, Processing Time 0.028 seconds

Design and characterization of a compact array of MEMS accelerometers for geotechnical instrumentation

  • Bennett, V.;Abdoun, T.;Shantz, T.;Jang, D.;Thevanayagam, S.
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.663-679
    • /
    • 2009
  • The use of Micro-Electro-Mechanical Systems (MEMS) accelerometers in geotechnical instrumentation is relatively new but on the rise. This paper describes a new MEMS-based system for in situ deformation and vibration monitoring. The system has been developed in an effort to combine recent advances in the miniaturization of sensors and electronics with an established wireless infrastructure for on-line geotechnical monitoring. The concept is based on triaxial MEMS accelerometer measurements of static acceleration (angles relative to gravity) and dynamic accelerations. The dynamic acceleration sensitivity range provides signals proportional to vibration during earthquakes or construction activities. This MEMS-based in-place inclinometer system utilizes the measurements to obtain three-dimensional (3D) ground acceleration and permanent deformation profiles up to a depth of one hundred meters. Each sensor array or group of arrays can be connected to a wireless earth station to enable real-time monitoring as well as remote sensor configuration. This paper provides a technical assessment of MEMS-based in-place inclinometer systems for geotechnical instrumentation applications by reviewing the sensor characteristics and providing small- and full-scale laboratory calibration tests. A description and validation of recorded field data from an instrumented unstable slope in California is also presented.

Terra-Scope - a MEMS-based vertical seismic array

  • Glaser, Steven D.;Chen, Min;Oberheim, Thomas E.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 2006
  • The Terra-Scope system is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. They are expected to cost approximately $6000 each. An internal 16-bit, extremely low power MCU controls all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage. Each Pod measures 3-D acceleration, tilt, azimuth, temperature, and other parametric variables such as pore water pressure and pH. Each Pod communicates over a standard digital bus (RS-485) through a completely web-based GUI interface, and has a power consumption of less than 400 mW. Three-dimensional acceleration is measured by pure digital force-balance MEMS-based accelerometers. These accelerometers have a dynamic range of more than 115 dB and a frequency response from DC to 1000 Hz with a noise floor of less than $30ng_{rms}/{\surd}Hz$. Accelerations above 0.2 g are measured by a second set of MEMS-based accelerometers, giving a full 160 dB dynamic range. This paper describes the system design and the cooperative shared-time scheduler implemented for this project. Restraints accounted for include multiple data streams, integration of multiple free agents, interaction with the asynchronous world, and hardened time stamping of accelerometer data. The prototype of the device is currently undergoing evaluation. The first array will be installed in the spring of 2006.

Experimental Analysis of Elastic Wave Propagation m a Ribbed Cylindrical Shell Using the Principle of Reciprocity (가역성 원리를 이용한 보강 원통형 셸에서의 탄성파 전파에 대한 실험적 해석)

  • 길현권;양귀봉;김창렬;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1089-1092
    • /
    • 2001
  • In order to measure the vibration of a ribbed clindrical shell, the principle of reciprocity has been implemented. An accelerometer was fixed at the position defined as the excitation point. An impact hammer was used to tap at the response array points (64 points) located along the circumference of the shell. The frequency response function was reciprocally measured at each point in turn. The response data was processed to obtain the frequency/wavenumber spectrum. From the spectrum the characteristics of wave propagation on the ribbed cylindrical shell have been observed.

  • PDF

Design and Implementation of Robot-Based Alarm System of Emergency Situation Due to Falling of The Eldely (고령자 낙상에 의한 응급 상황의 4족 로봇 기반 알리미 시스템 설계 및 구현)

  • Park, ChulHo;Lim, DongHa;Kim, Nam Ho;Yu, YunSeop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.781-788
    • /
    • 2013
  • In this paper, we introduce a quadruped robot-based alarm system for monitoring the emergency situation due to falling in the elderly. Quadruped robot includes the FPGA Board(Field Programmable Gate Array) applying a red-color tracking algorithm. To detect a falling of the elderly, a sensor node is worn on chest and accelerations and angular velocities measured by the sensor node are transferred to quadruped robot, and then the emergency signal is transmitted to manager if a fall is detected. Manager controls the robot and then he judges the situation by monitoring the real-time images transmitted from the robot. If emergency situation is decided by the manager, he calls 119. When the fall detection system using only sensor nodes is used, sensitivity of 100% and specificity of 98.98% were measured. Using the combination of the fall detection system and portable camera (robot), the emergency situation was detected to 100 %.

Education Equipment for FPGA Design of Sensor-based IOT System (센서 기반의 IOT 시스템의 FPGA 설계 교육용 장비)

  • Cho, Byung-woo;Kim, Nam-young;Yu, Yun-seop
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2016
  • Education equipment for field programmable gate array (FPGA) design of sensor-based IOT (Internet Of Thing) system is introduced. Because sensors have different interfaces, several types of interface controller on FPGA need. Using this equipment, several types of interface controller, which can control ADC (analog-to-digital converter) for analog sensor outputs and $I^2C$ (Inter-Integrated Circuit), SPI (Serial Peripheral Interface Bus), and GPIO (General-Purpose Input/Output) for digital sensor outputs, can be designed on FPGA. Image processing hardware using image sensors and display controller for real and image-processed images or videos can be design on FPGA chip. This equipment can design a SOC (System On Chip) consisting of a hard process core on Linux OS and a FPGA block for IOT system which can communicate with wire and wireless networks. Using the education equipment, an example of hardware design using image sensor and accelerometer is described, and an example of syllabus for "Digital system design using FPGA" course is introduced. Using the education equipment, students can develop the ability to design some hardware, and to train the ability for the creative capstone design through conceptual, partial-level, and detail designs.

Active Structural Acoustical Control of a Smart Panel Using Direct Velocity Feedback (직접속도 피드백을 이용한 지능판의 능동구조음향제어)

  • Stephen J, Elliott;Paolo, Gardonio;Young-Sup, Lee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1007-1014
    • /
    • 2004
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of $4\;{\times}\;4$ accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output control system. The theoretical and experimental study of sensor-.actuator frequency response function shows that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900 Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15 dB in vibration level and about 8 dB in acoustic power level at the (1,1) mode of the smart panel. It has been also shown that the shaping error of PVDF actuator could limit the stability and performance of the control system.

A Test Bench with Six Degrees of Freedom of Motion For Development of Small Quadrotor Drones (소형 쿼드로터 드론 개발을 위한 6 자유도 운동 실험 장치)

  • Jin, Jaehyun;Jo, Jin-Hee
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • A new test bench for small multi-rotor type drones has been developed. Six degrees of freedom (DOF) motion is possible due to a ball bushing, wheels, and rotating plates. An FPGA (field programmable gate array) based controller, that supports realtime parallel processing, is used to measure attitude with an accelerometer and a gyro to adjust motor speed. Several tests were performed to check the operational properties of the test bench and the controller. The results show that this test bench is proper for verifying controllers and the control methods of small multi-rotor drones.

A Study on the Dynamic Response Characteristics of Lathe Boring Bar (선반용 보링바의 동적응답특성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.62-69
    • /
    • 2010
  • Internal lathe machining with a boring bar is weak with respect to vibration because the bar is long and slender. Therefore, it is important to study the dynamic characteristics of a boring bar. The purpose of this study was to identify the effects of overhang and cutting conditions on the dynamic response characteristics of a boring bar. For an efficient experiment, an $L_g(3^3)$ orthogonal array was applied and the results were quantitatively analyzed by ANOVA. Overhang, feed per revolution, and depth of cut were selected as independent variables. Meanwhile, dynamic stiffness, damping ratio, damping coefficient, and acceleration were chosen as dependent variables. The vibration signal was obtained from an accelerometer attached to the boring bar, followed by visualization by a signal analyzer. The effect of overhang was found to have a significant effect on the dynamic stiffness, damping ratio, and damping coefficient, but the other variables did not. As the length of the overhang increased, the dynamic stiffness decreased and the damping ratio increased. In addition, the damping coefficient increased until the length of the overhang was 4D (where D is the shank diameter), after which it remained constant. The acceleration decreased until the overhang length was 4D, and then increased sharply when the overhang was increased further. From these results, the behavioral trend of the damping characteristics changed when its overhang length was 4D. Consequently, there is a critical point that the dynamic characteristics of boring bar change.