• Title/Summary/Keyword: Accelerator-driven Reactor

Search Result 29, Processing Time 0.024 seconds

Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

  • Kim, Wonkyeong;Lee, Hyun Chul;Pyeon, Cheol Ho;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.304-317
    • /
    • 2016
  • An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcrofte-Walton type accelerator, which generates the external neutron source by deuteriu-metritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

Reactor Physics Study Related to Subcriticality of Accelerator Driven System By AESJ/JAERl Working Party

  • Iwasaki, Tomohiko
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.05a
    • /
    • pp.66-66
    • /
    • 2002
  • Under Atomic Energy Society of Japan (AESJ) and Japan Atomic Energy Research Institute (JAERO, a Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) has been set since March 1999 to review and investigate special subjects related to reactor physics research of Accelerator-Driven System (ADS). In the ADSWP, the extensive and aggressive activity is being made by 25 professional members in the field of reactor physics in Japan. The ADS is now studying three subjects related to subcriticality of ADS; (1) calculation accuracy of sub criticality on ADS, (2) critical safety issues of ADS, and (3) theoretical review of subcriticality and its measurement methods. This paper describes two topics related to the subjects (1) and (2); one is an analysis of maximum reactivity potentially inserted to a subcritical core and the other is a benchmark proposal for checking calculation accuracy of sub criticality on ADS. The full specification of the calculation benchmark will be supplied by June 2002. Researchers from overseas, especially from Korea, are welcome to join this benchmark

  • PDF

Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

  • Pyeon, Cheol Ho;Yamanaka, Masao;Kim, Song-Hyun;Vu, Thanh-Mai;Endo, Tomohiro;Van Rooijen, Willem Fredrik G.;Chiba, Go
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1234-1239
    • /
    • 2017
  • Basic research on the accelerator-driven system is conducted by combining $^{235}U$-fueled and $^{232}Th$-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons) and the proton beam accelerator (100 MeV protons with a heavy metal target). The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-${\alpha}$ method, and the neutron source multiplication method.

Vacuum Technology at the Accelerator-Driven Nuclear Reactor

  • Lee, Tae-Yeon;Lee, Hui-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.227-227
    • /
    • 2013
  • 후쿠시마 원전 사고 이후로 원전의 안전에 대한 관심이 어느때 보다 크다. 기존의 원전이 가지고 있는 위험성을 획기적으로 줄인 가속기 구동 원자로(accelerator-driven nuclear reactor)에 대한 관심 또한 매우 크다. 양성자 가속기를 이용하여 양성자를 원자로 내부에 입사시켜 핵파쇄 반응으로 중성자를 생산하는 이 시스템은, 진공을 유지하여야 하는 가속기와 진공이 필요 없는 원자로가 서로 연결되어 있어서, 연결부에 양성자빔을 통과시키고 진공은 유지시키는 윈도우가 필요하다. 이 윈도우를 중심으로 가속기 구동 원자로에 필요한 진공 기술을 살펴본다.

  • PDF

COMPUTATIONAL INVESTIGATION OF 99Mo, 89Sr, AND 131I PRODUCTION RATES IN A SUBCRITICAL UO2(NO3)2 AQUEOUS SOLUTION REACTOR DRIVEN BY A 30-MEV PROTON ACCELERATOR

  • GHOLAMZADEH, Z.;FEGHHI, S.A.H.;MIRVAKILI, S.M.;JOZE-VAZIRI, A.;ALIZADEH, M.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.875-883
    • /
    • 2015
  • The use of subcritical aqueous homogenous reactors driven by accelerators presents an attractive alternative for producing $^{99}Mo$. In this method, the medical isotope production system itself is used to extract $^{99}Mo$ or other radioisotopes so that there is no need to irradiate common targets. In addition, it can operate at much lower power compared to a traditional reactor to produce the same amount of $^{99}Mo$ by irradiating targets. In this study, the neutronic performance and $^{99}Mo$, $^{89}Sr$, and $^{131}I$ production capacity of a subcritical aqueous homogenous reactor fueled with low-enriched uranyl nitrate was evaluated using the MCNPX code. A proton accelerator with a maximum 30-MeV accelerating power was used to run the subcritical core. The computational results indicate a good potential for the modeled system to produce the radioisotopes under completely safe conditions because of the high negative reactivity coefficients of the modeled core. The results show that application of an optimized beam window material can increase the fission power of the aqueous nitrate fuel up to 80%. This accelerator-based procedure using low enriched uranium nitrate fuel to produce radioisotopes presents a potentially competitive alternative in comparison with the reactor-based or other accelerator-based methods. This system produces ~1,500 Ci/wk (~325 6-day Ci) of $^{99}Mo$ at the end of a cycle.

Conceptual Design for Accelerator-Driven Sodium-Cooled Sub-critical Transmutation Reactors using Scale Laws and Integrated Code System

  • Lee, Kwang-Gu;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.660-665
    • /
    • 1998
  • The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scale and verified through the methodology in this paper, which is referred to advanced Liquid Metal Reactor (ALMR). a Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the intergrated code system. Intergrated Code System (ICS) consist of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related are analyzed once-through. Results of conceptual design are attached in this paper.

  • PDF

DYNAMIC MODELING AND ANALYSIS OF ALTERNATIVE FUEL CYCLE SCENARIOS IN KOREA

  • Jeong, Chang-Joon;Choi, Hang-Bok
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium uranium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ${\sim}65000$ tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors.

Numerical Simulations of Subcritical Reactor Kinetics in Thermal Hydraulic Transient Phases

  • J. Yoo;Park, W. S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.149-154
    • /
    • 1998
  • A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute(KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons from spallation reactions are essentially required for operating the reactor in its steady state. furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance of the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases.

  • PDF

Power control of CiADS core with the intensity of the proton beam

  • Yin, Kai;Ma, Wenjing;Cui, Wenjuan;He, Zhiyong;Li, Xinxin;Dang, Shiwu;Yang, Feng;Guo, Yuhui;Duan, Limin;Li, Meng;Hou, Yikai
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1253-1260
    • /
    • 2022
  • This paper reports the control method for the core power of the China initiative Accelerator Driven System (CiADS) facility. In the CiADS facility, an intense external neutron source provided by a proton accelerator coupled to a spallation target is used to drive a sub-critical reactor. Without any control rod inside the sub-critical reactor, the core power is controlled by adjusting the proton beam intensity. In order to continuously change the beam intensity, an adjustable aperture is considered to be used at the Low Energy Beam Transport (LEBT) line of the accelerator. The aperture size is adjusted based on the Proportional Integral Derivative (PID) controllers, by comparing either the setting beam intensity or the setting core power with the measured value. To evaluate the proposed control method, a CiADS core model is built based on the point reactor kinetics model with six delayed neutron groups. The simulations based on the CiADS core model have indicated that the core power can be controlled stably by adjusting the aperture size. The response time in the adjustment of the core power depends mainly on the adjustment time of the beam intensity.

Technical Review on Thorium Breeding Cycle (토륨 핵연료 주기 기술동향)

  • Noh, Taewan
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.52-64
    • /
    • 2016
  • The production of nuclear energy from thorium which is non-fissile material was a main issue until the middle of 1970's, because of the thorium's abundance as energy resources, its capability of breeding fissile material U233, and the reduction of long-lived actinides. However, to use thorium as nuclear fuel, some obstacles such as the necessities of external neutron source and long-term neutron irradiation for effective breeding, and the production of high radioactive isotopes in the course of thorium breeding cycle should be overcome. The difficulties to resolve these cons of thorium cycle became the reason of interruption of the related researches in the middle of 1970's. But in the 21st century, the change of societal perspective regarding nuclear energy and the appearance of accelerator-driven nuclear reactor shift those cons into pros and rehabilitate the study of thorium. The high activity of thorium cycle turned out to be a good option as higher resistance and easier detectibility of nuclear proliferation and the employment of subcritical accelerator-driven reactor as external neutron sources is considered to enhance the nuclear safety. In this study we compare the thorium cycle with the currently-used uranium cycle and analyze the technical status and perspective of thorium researches which use accelerator-driven reactors.