• 제목/요약/키워드: Accelerator-driven Reactor

검색결과 29건 처리시간 0.021초

Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

  • Kim, Wonkyeong;Lee, Hyun Chul;Pyeon, Cheol Ho;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.304-317
    • /
    • 2016
  • An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcrofte-Walton type accelerator, which generates the external neutron source by deuteriu-metritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

Reactor Physics Study Related to Subcriticality of Accelerator Driven System By AESJ/JAERl Working Party

  • Iwasaki, Tomohiko
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2002년도 춘계공동학술발표회요약집
    • /
    • pp.66-66
    • /
    • 2002
  • Under Atomic Energy Society of Japan (AESJ) and Japan Atomic Energy Research Institute (JAERO, a Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) has been set since March 1999 to review and investigate special subjects related to reactor physics research of Accelerator-Driven System (ADS). In the ADSWP, the extensive and aggressive activity is being made by 25 professional members in the field of reactor physics in Japan. The ADS is now studying three subjects related to subcriticality of ADS; (1) calculation accuracy of sub criticality on ADS, (2) critical safety issues of ADS, and (3) theoretical review of subcriticality and its measurement methods. This paper describes two topics related to the subjects (1) and (2); one is an analysis of maximum reactivity potentially inserted to a subcritical core and the other is a benchmark proposal for checking calculation accuracy of sub criticality on ADS. The full specification of the calculation benchmark will be supplied by June 2002. Researchers from overseas, especially from Korea, are welcome to join this benchmark

  • PDF

Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

  • Pyeon, Cheol Ho;Yamanaka, Masao;Kim, Song-Hyun;Vu, Thanh-Mai;Endo, Tomohiro;Van Rooijen, Willem Fredrik G.;Chiba, Go
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1234-1239
    • /
    • 2017
  • Basic research on the accelerator-driven system is conducted by combining $^{235}U$-fueled and $^{232}Th$-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons) and the proton beam accelerator (100 MeV protons with a heavy metal target). The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-${\alpha}$ method, and the neutron source multiplication method.

Vacuum Technology at the Accelerator-Driven Nuclear Reactor

  • 이태연;이희석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.227-227
    • /
    • 2013
  • 후쿠시마 원전 사고 이후로 원전의 안전에 대한 관심이 어느때 보다 크다. 기존의 원전이 가지고 있는 위험성을 획기적으로 줄인 가속기 구동 원자로(accelerator-driven nuclear reactor)에 대한 관심 또한 매우 크다. 양성자 가속기를 이용하여 양성자를 원자로 내부에 입사시켜 핵파쇄 반응으로 중성자를 생산하는 이 시스템은, 진공을 유지하여야 하는 가속기와 진공이 필요 없는 원자로가 서로 연결되어 있어서, 연결부에 양성자빔을 통과시키고 진공은 유지시키는 윈도우가 필요하다. 이 윈도우를 중심으로 가속기 구동 원자로에 필요한 진공 기술을 살펴본다.

  • PDF

COMPUTATIONAL INVESTIGATION OF 99Mo, 89Sr, AND 131I PRODUCTION RATES IN A SUBCRITICAL UO2(NO3)2 AQUEOUS SOLUTION REACTOR DRIVEN BY A 30-MEV PROTON ACCELERATOR

  • GHOLAMZADEH, Z.;FEGHHI, S.A.H.;MIRVAKILI, S.M.;JOZE-VAZIRI, A.;ALIZADEH, M.
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.875-883
    • /
    • 2015
  • The use of subcritical aqueous homogenous reactors driven by accelerators presents an attractive alternative for producing $^{99}Mo$. In this method, the medical isotope production system itself is used to extract $^{99}Mo$ or other radioisotopes so that there is no need to irradiate common targets. In addition, it can operate at much lower power compared to a traditional reactor to produce the same amount of $^{99}Mo$ by irradiating targets. In this study, the neutronic performance and $^{99}Mo$, $^{89}Sr$, and $^{131}I$ production capacity of a subcritical aqueous homogenous reactor fueled with low-enriched uranyl nitrate was evaluated using the MCNPX code. A proton accelerator with a maximum 30-MeV accelerating power was used to run the subcritical core. The computational results indicate a good potential for the modeled system to produce the radioisotopes under completely safe conditions because of the high negative reactivity coefficients of the modeled core. The results show that application of an optimized beam window material can increase the fission power of the aqueous nitrate fuel up to 80%. This accelerator-based procedure using low enriched uranium nitrate fuel to produce radioisotopes presents a potentially competitive alternative in comparison with the reactor-based or other accelerator-based methods. This system produces ~1,500 Ci/wk (~325 6-day Ci) of $^{99}Mo$ at the end of a cycle.

Conceptual Design for Accelerator-Driven Sodium-Cooled Sub-critical Transmutation Reactors using Scale Laws and Integrated Code System

  • Lee, Kwang-Gu;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.660-665
    • /
    • 1998
  • The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scale and verified through the methodology in this paper, which is referred to advanced Liquid Metal Reactor (ALMR). a Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the intergrated code system. Intergrated Code System (ICS) consist of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related are analyzed once-through. Results of conceptual design are attached in this paper.

  • PDF

DYNAMIC MODELING AND ANALYSIS OF ALTERNATIVE FUEL CYCLE SCENARIOS IN KOREA

  • Jeong, Chang-Joon;Choi, Hang-Bok
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.85-94
    • /
    • 2007
  • The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium uranium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ${\sim}65000$ tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors.

Numerical Simulations of Subcritical Reactor Kinetics in Thermal Hydraulic Transient Phases

  • J. Yoo;Park, W. S.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.149-154
    • /
    • 1998
  • A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute(KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons from spallation reactions are essentially required for operating the reactor in its steady state. furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance of the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases.

  • PDF

Power control of CiADS core with the intensity of the proton beam

  • Yin, Kai;Ma, Wenjing;Cui, Wenjuan;He, Zhiyong;Li, Xinxin;Dang, Shiwu;Yang, Feng;Guo, Yuhui;Duan, Limin;Li, Meng;Hou, Yikai
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1253-1260
    • /
    • 2022
  • This paper reports the control method for the core power of the China initiative Accelerator Driven System (CiADS) facility. In the CiADS facility, an intense external neutron source provided by a proton accelerator coupled to a spallation target is used to drive a sub-critical reactor. Without any control rod inside the sub-critical reactor, the core power is controlled by adjusting the proton beam intensity. In order to continuously change the beam intensity, an adjustable aperture is considered to be used at the Low Energy Beam Transport (LEBT) line of the accelerator. The aperture size is adjusted based on the Proportional Integral Derivative (PID) controllers, by comparing either the setting beam intensity or the setting core power with the measured value. To evaluate the proposed control method, a CiADS core model is built based on the point reactor kinetics model with six delayed neutron groups. The simulations based on the CiADS core model have indicated that the core power can be controlled stably by adjusting the aperture size. The response time in the adjustment of the core power depends mainly on the adjustment time of the beam intensity.

토륨 핵연료 주기 기술동향 (Technical Review on Thorium Breeding Cycle)

  • 노태완
    • 에너지공학
    • /
    • 제25권2호
    • /
    • pp.52-64
    • /
    • 2016
  • 토륨은 우라늄에 비해 풍부한 자원으로서의 가치와 핵분열 물질인 U233을 증식하고, 장주기 액티나이드 핵종 발생이 감소하는 특성으로 인해 원자력 연구개발 초기부터 우라늄 주기와 함께 주요 연구대상이었다. 하지만 토륨은 자체적으로 핵분열이 불가능하므로 에너지원으로 활용하기 위해서는 별도의 외부 중성자원이 필요하고, 토륨 주기 과정에서 고방사성 물질이 발생하며, 효과적인 증식을 위해서는 긴 시간의 중성자 조사가 필요했다. 이에 따른 기술적 어려움과 연구개발 필요성의 감소로 1970년대 중반 이후 토륨 관련 연구가 거의 중단되었다. 하지만 1990-2000년대에 에너지 자원에 대한 사회적 시각 변화와 외부 중성자 공급원으로 이용하는 가속기 구동 원자로의 출현으로 과거 토륨주기의 단점으로 지목되었던 성질들이 오히려 핵확산 저항성과 감시성을 높이고, 가속기 구동 원자로의 미임계 운전 특성에 의한 원자력 안전성 증대라는 장점으로 부각되어 토륨에 관한 연구가 세계적으로 활발히 추진되고 있다. 본 연구에서는 토륨주기의 장단점을 우라늄주기와 비교, 분석하고 가속기 구동형 원자로를 이용한 토륨 연구의 기술 현황을 분석한다.