• Title/Summary/Keyword: Acceleration severity index

Search Result 11, Processing Time 0.017 seconds

A new damage index for detecting sudden change of structural stiffness

  • Chen, B.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.315-341
    • /
    • 2007
  • A sudden change of stiffness in a structure, associated with the events such as weld fracture and brace breakage, will cause a discontinuity in acceleration response time histories recorded in the vicinity of damage location at damage time instant. A new damage index is proposed and implemented in this paper to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. The proposed damage index is suitable for online structural health monitoring applications. It can also be used in conjunction with the empirical mode decomposition (EMD) for damage detection without using the intermittency check. Numerical simulation using a five-story shear building under different types of excitation is executed to assess the effectiveness and reliability of the proposed damage index and damage detection approach for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also examined. The results from this study demonstrate that the damage index and damage detection approach proposed can accurately identify the damage time instant and location in the building due to a sudden loss of stiffness if measurement noise is below a certain level. The relation between the damage severity and the proposed damage index is linear. The wavelet-transform (WT) and the EMD with intermittency check are also applied to the same building for the comparison of detection efficiency between the proposed approach, the WT and the EMD.

Data Processing and Numerical Procedures Influencing on Occupant Risk Indices (탑승자 안전지수에 영향을 주는 데이터 처리과정과 수치절차)

  • Kim, Kee-Dong;Ko, Man-Gi;Nam, Min-Kyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.215-226
    • /
    • 2007
  • To verify the performance of roadside barriers, occupant risk indices are calculated from acceleration and angular velocity data of vehicle crash tests. The occupant risk indices to be computed include THIV(Theoretical Head Impact Velocity), PHD(Post-impact Head Deceleration), ASI(Acceleration Severity Index), OIV(Occupant Impact Velocity) and ORA(Occupant Ridedown Acceleration). There is a confusion due to different values of occupant risk indices produced for the same test data because various computational procedures and data processing methods can be applied to compute them. To slove this problem the effects of various numerical procedures and data processing methods on occupant risk indices were investigated. If the sampling rate specified in the guidelines is used for full-scale vehicle crash tests, an interpolation of impact time and numerical integration methods do not result in an appreciable change of THIV and OIV. The way to determine 10msec moving average for PHD and zero offset of data processing should be specified in the guidelines because 10msec moving average and zero offset methods have a significant influence on occupant risk indices.

  • PDF

A Study on the Injury Criteria of the Occupant Protection Performance of Crush Cushions (충격흡수시설의 탑승자보호 성능평가 기준에 관한 연구)

  • Lim, Jae-Moon;Jung, Geun-Seup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 2008
  • The performance of crash cushion systems is certified through the full scale crash tests by the standard for installation and maintenance guidelines for roadside safety appurtenance. The impact severities of impacting vehicles in collision with crash cushion systems are rated by indices THIV and PHD. Crash test results are considered to study the performance of three crash cushion systems. In case of the frontal impact or the offset frontal impact, the results show that THIV values of three systems are very close to the threshold limit for the occupant protection. Also, the results show that PHD would be improper for the occupant protection performance index. In order to improve the occupant protection performance of crash cushions, ASI needs to be included in the impact severity index.

Hybrid damage monitoring of steel plate-girder bridge under train-induced excitation by parallel acceleration-impedance approach

  • Hong, D.S.;Jung, H.J.;Kim, J.T.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.719-743
    • /
    • 2011
  • A hybrid damage monitoring scheme using parallel acceleration-impedance approaches is proposed to detect girder damage and support damage in steel plate-girder bridges which are under ambient train-induced excitations. The hybrid scheme consists of three phases: global and local damage monitoring in parallel manner, damage occurrence alarming and local damage identification, and detailed damage estimation. In the first phase, damage occurrence in a structure is globally monitored by changes in vibration features and, at the same moment, damage occurrence in local critical members is monitored by changes in impedance features. In the second phase, the occurrence of damage is alarmed and the type of damage is locally identified by recognizing patterns of vibration and impedance features. In the final phase, the location and severity of the locally identified damage are estimated by using modal strain energy-based damage index methods. The feasibility of the proposed scheme is evaluated on a steel plate-girder bridge model which was experimentally tested under model train-induced excitations. Acceleration responses and electro-mechanical impedance signatures were measured for several damage scenarios of girder damage and support damage.

Damage Evaluation of a Structure Using Continuous Wavelet Transform (연속웨이블렛 변환을 이용한 구조물의 손상도 평가)

  • Kim, Han-Sang;Kim, Hyun-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.140-146
    • /
    • 2008
  • The damage evaluation method for framed structures using continuous wavelet transform (CWT) is proposed. CWT is applied to the response acceleration of a structure subjected to earthquake load to decompose the response acceleration corresponding to each scale, then the normalized energy value for each scale is calculated. The difference between the normalized energy curvature (NEC) in each node before and after damage indicates a damaged element, which makes it possible to assess the soundness of structural elements. As damage becomes more severe the difference in normalized energy curvature becomes larger. The NEC calculated from the signal corresponding to high scale in CWT analysis is found to be a good index that shows the location and severity of damage.

A new statistical moment-based structural damage detection method

  • Zhang, J.;Xu, Y.L.;Xia, Y.;Li, J.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.445-466
    • /
    • 2008
  • This paper presents a novel structural damage detection method with a new damage index based on the statistical moments of dynamic responses of a structure under a random excitation. After a brief introduction to statistical moment theory, the principle of the new method is put forward in terms of a single-degree-of-freedom (SDOF) system. The sensitivity of statistical moment to structural damage is discussed for various types of structural responses and different orders of statistical moment. The formulae for statistical moment-based damage detection are derived. The effect of measurement noise on damage detection is ascertained. The new damage index and the proposed statistical moment-based damage detection method are then extended to multi-degree-of-freedom (MDOF) systems with resort to the leastsquares method. As numerical studies, the proposed method is applied to both single and multi-story shear buildings. Numerical results show that the fourth-order statistical moment of story drifts is a more sensitive indicator to structural stiffness reduction than the natural frequencies, the second order moment of story drift, and the fourth-order moments of velocity and acceleration responses of the shear building. The fourth-order statistical moment of story drifts can be used to accurately identify both location and severity of structural stiffness reduction of the shear building. Furthermore, a significant advantage of the proposed damage detection method lies in that it is insensitive to measurement noise.

A Study on Driving Safety Evaluations Using Full Scale Crash Test Data of Curb (연석의 실물차량 충돌시험 데이터를 이용한 주행안전성 평가에 관한 연구)

  • Kim, Jong-Min;Noh, Kwan-Sub;Kim, Jang-Wook;Byeon, Ji-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • Current [Guideline for Installation and Management of Sidewalks and Safety Facilities on Roads] suggests that the types of curbs should be Barrier curb ($85^{\circ}$). Although Barrier curbs ($90^{\circ}$) were not specified in the guideline. The curbs installed on the roads currently are Barrier curbs ($90^{\circ}$) which are not specified in the installation standard. Therefore, it is critical to prepare for the installation standard of curbs by researching types of curbs and driving safety. This research have assessed the driving safety throughout Full Scale Crash Test according to type of curbs (Barrier curbs ($85^{\circ}$) and Barrier curbs ($90^{\circ}$)). Barrier curbs ($90^{\circ}$) showed higher figure in Theoretical head Impact Velocity, Post-impact Head Deceleration, Vehicle Damage when Crash, Passenger's Wounds Severity, and every other items than Barrier curbs ($85^{\circ}$). Barrier curbs ($85^{\circ}$) were found to have better Occupant Safety Index. Analysis of Behavior Using Full-Scale Crash Test showed difference depending on the Impact Condition between Barrier curbs ($85^{\circ}$) and Barrier curbs ($90^{\circ}$). Generally, Barrier curbs ($85^{\circ}$) were superior than Barrier curbs ($90^{\circ}$) in terms of protecting the passengers and vehicle damages. When an impact angle increases, Acceleration of Vehicle, Variations of Speed, and Contact Relationship between Wheels and Curbs, two types of curb showed similarity. However, if an impact of an angle decreases, Barrier Curbs ($85^{\circ}$) showed excellence in Driving Safety such as Acceleration of Vehicle, Variations of Speed, and Contact Relationship between Wheels and Curbs.

Establishment of an Occupant Analysis modeling for Automobile Side Impact Using ATB Software (ATB 소프트웨어를 이용한 측면충돌시 승랙거동해석 모델링의 확립 및 분석)

  • 임재문;최중원;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.85-96
    • /
    • 1996
  • Most protection systems such as seat belts and airbags are not effective means for side structure. There has been significant effort in the automobile industries in seeking other protective methods, such as stiffer structure and padding on the door inner panel. Therefore, a car-to-car side impact model has been developed using ATB occupant simulation program and validated for test data of the vehicle. Compared to the existing side impact models, the developed model has a more detailed vehicle side structure representation for the more realistic impact response of the door. This model include impact bar which effectively increases the side structure stiffness without reduction of space between the occupant and the door and padding for absorbing impact energy. The established model is applied to a 4-door vehicle. The parameter study indicated that a stiffer impact bar would reduce both the acceleration-based criteria, such as thoracic trauma index: TTI(d), and deformation-based criteria, such as viscous criterion(VC). Padding on the door inner panel would reduce TTI(d) while VC gives the opposite indication in a specified thickness range. For a 4-door vehicle, the stiffness enhancement of B-pillar is more beneficial than that of A-pillar for occupant injury severity indices.

  • PDF

A Study on the Effect of Delta-V Based on Vehicle Damages and Injuries Subjected by Rear-End Collisions (후미추돌사고의 유효충돌속도가 차량손상 및 승차자 상해에 미치는 영향에 관한 연구)

  • Kang, Sung-Mo;Ahn, Byung-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.72-80
    • /
    • 2008
  • In a case of an automobile collision, vehicle damage and injury of the driver and the passenger occur. The scale of the collision which is effected by the extent of vehicle damage and the injury of the passenger, depends on the delta-V. Based on the photograph interpretation o the actual case of accidents in the Seoul and the Incheon area, this study measured the depth of crush and calculated the delta-V. Through verifying the correlation of the depth of crush and the change of velocity, relative equation was evaluated and compared with the prior study results to prove that they are almost identical. Thus, the depth of crush can be used as an index of the degree of impact, which can be utilized as the change of velocity to evaluate the level of injury done to the passengers. However, the period of hospitalization and diagnostics claimed by the injured proves to have no correlation with the delta-V and the extent of vehicle damage, this is due to the non-objective way of diagnosis and the anamnesis of the injured. This study established the absolute limit harmlessness and the choosing limit harmlessness, allowing the appraisal for Yes or No of the injury or the harmlessness based on the prior studies. Moreover, utilizing the relative equation formed between the depth of crush and the delta-V, each case of collision was compared and evaluated in comparison to the limit harmlessness to prove that the 90.4% of the so-called 'claiming-to-be-injured' were exaggerating or fabricating.

An Experimental Study on the Safety Performance of the Rear Safety Guard with Air Bag for Truck (화물차량용 에어백 후부안전판 안전성능에 대한 실험적 연구)

  • Park, In-Song;Yun, Kyung-Won;Park, Kwang-Jong;Kim, Hyo-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.10-19
    • /
    • 2014
  • Despite the movement of safe traffic by the Korean government to reduce deaths in traffic accidents, the casualties increase year by year. In particular, more and more accidents and casualties are reported from car collisions from the back of the vehicles parked for managing traffic accidents on the road, cleaning main roads and medial strips, repairing roads. In order to response to these accidents, the government should take protective measures for road users. In the last decade, seventy-one cases have been reported to occur during highway repair and maintenance. As a result, eight persons were killed and seventy-six were injured, showing the high death rate of 11.3 percent. Therefore, it seems urgent to take some actions against it. The United States and European countries legislate that vehicles of road repair and maintenance should be mandatorily equipped with shock absorber at the back. Korea, however, does not have such legislative measures, which are needed at this time to protect workers on the road. This study compares the performance of the traditional shock absorber for road maintenance vehicles with that of the rear safety guard using air bag, manufactured in accordance with related laws in Korea. Based on the results of the 60km/h rear collision test, this paper proposes improvements in related laws and regulations in an attempt to reduce casualties.