• 제목/요약/키워드: Acceleration mode

검색결과 532건 처리시간 0.026초

Chip-scale Temperature-compensated Superstructured Waveguide Bragg Grating Based Multiparametric Sensor

  • Vishwaraj, Naik Parrikar;Nataraj, Chandrika Thondagere;Jagannath, Ravi Prasad Kogravalli;Gurusiddappa, Prashanth;Talabattula, Srinivas
    • Current Optics and Photonics
    • /
    • 제4권4호
    • /
    • pp.293-301
    • /
    • 2020
  • In this paper we propose and theoretically analyze a monolithic multiparametric sensor consisting of a superstructure of surface-relief waveguide Bragg gratings (WBGs), a micro-machined diaphragm, and a cantilever beam. Diaphragms of two different configurations, namely circular and square, are designed and analyzed separately for pressure measurement. The square diaphragm is then selected for further study, since it shows relatively higher sensitivity compared to the circular one, as it incurs more induced stress when any pressure is applied. The cantilever beam with a proof mass is designed to enhance the sensitivity for acceleration measurement. A unique mathematical method using coupled-mode theory and the transfer-matrix method is developed to design and analyze the shift in the Bragg wavelength of the superstructure configuration of the gratings, due to simultaneously applied pressure and acceleration. The effect of temperature on the wavelength shift is compensated by introducing another Bragg grating in the superstructure configuration. The measured sensitivities for pressure and acceleration are found to be 0.21 pm/Pa and 6.49 nm/g respectively.

Study on seismic performance of steel frame with archaized-style under pseudo-dynamic loading

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.39-48
    • /
    • 2019
  • This paper presents an experimental study on a 1/2 scale steel frame with archaized-style under the pseudo-dynamic loading. Four seismic waves, including El Centro wave, Taft wave, Lanzhou wave and Wenchuan wave, were input during the test. The hysteresis characteristic, energy dissipation acceleration response, displacement response, strength, stiffness and strain were analyzed. Based on the experiment, the elastoplastic dynamic time-history analysis was carried out with the software ABAQUS. The stress distribution and failure mode were obtained. The results indicate that the steel frame with archaized-style was in elastic stage when the peak acceleration of input wave was no more than 400 gal. Under Wenchuan wave with peak acceleration of 620 gal, the steel frame enters into the elastoplastic stage, the maximum inter-story drift was 1/203 and the bearing capacity still tended to increase. During the loading process, Dou-Gong yielded first and played the role of the first seismic fortification line, and then beam ends and column bottom ends yielded in turn. The steel frame with archaized-style has good seismic performance and meets the seismic design requirement of Chinese code.

Fragility assessment for electric cabinet in nuclear power plant using response surface methodology

  • Tran, Thanh-Tuan;Cao, Anh-Tuan;Nguyen, Thi-Hong-Xuyen;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.894-903
    • /
    • 2019
  • An approach for collapse risk assessment is proposed to evaluate the vulnerability of electric cabinet in nuclear power plants. The lognormal approaches, namely maximum likelihood estimation and linear regression, are introduced to establish the fragility curves. These two fragility analyses are applied for the numerical models of cabinets considering various boundary conditions, which are expressed by representing restrained and anchored models at the base. The models have been built and verified using the system identification (SI) technique. The fundamental frequency of the electric cabinet is sensitive because of many attached devices. To bypass this complex problem, the average spectral acceleration $S_{\bar{a}}$ in the range of period that cover the first mode period is chosen as an intensity measure on the fragility function. The nonlinear time history analyses for cabinet are conducted using a suite of 40 ground motions. The obtained curves with different approaches are compared, and the variability of risk assessment is evaluated for restrained and anchored models. The fragility curves obtained for anchored model are found to be closer each other, compared to the fragility curves for restrained model. It is also found that the support boundary conditions played a significant role in acceleration response of cabinet.

Experimental study on vibration serviceability of cold-formed thin-walled steel floor

  • Bin Chen;Liang Cao;Faming Lu;Y. Frank Chen
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.577-589
    • /
    • 2023
  • In this study, on-site testing was carried out to investigate the vibration performance of a cold-formed thin-walled steel floor system. Ambient vibration, walking excitation (single and double persons), and impulsive excitation (heel-drop and jumping) were considered to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes) and vertical acceleration response. Meanwhile, to discuss the influence of cement fiberboard on structural vibration, the primary vibration parameters were compared between the systems with and without the installation of cement fiberboard. Based on the experimental analysis, the cold-formed thin-walled steel floor possesses high frequency (> 10 Hz) and damping (> 2%); the installed cement fiberboard mainly increases the mass of floor system without effectively increasing the floor stiffness and may reduce the effects of primary vibration parameters on acceleration response; and the human-structure interaction should be considered when analyzing the vibration serviceability. The comparison of the experimental results with those in the AISC Design Guide indicates that the cold-formed thin-walled steel floor exhibits acceptable vibration serviceability. A crest factor 𝛽rp (ratio of peak to root-mean-square accelerations) is proposed to determine the root-mean-square acceleration for convenience.

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

Bayesian approach for the accuracy evaluating of the seismic demand estimation of SMRF

  • Ayoub Mehri Dehno;Hasan Aghabarati;Mehdi Mahdavi Adeli
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.117-130
    • /
    • 2024
  • Probabilistic model of seismic demand is the main tool used for seismic demand estimation, which is a fundamental component of the new performance-based design method. This model seeks to mathematically relate the seismic demand parameter and the ground motion intensity measure. This study is intended to use Bayesian analysis to evaluate the accuracy of the seismic demand estimation of Steel moment resisting frames (SMRFs) through a completely Bayesian method in statistical calculations. In this study, two types of intensity measures (earthquake intensity-related indices such as magnitude and distance and intensity indices related to ground motion and spectral response including peak ground acceleration (PGA) and spectral acceleration (SA)) have been used to form the models. In addition, an extensive database consisting of sixty accelerograms was used for time-series analysis, and the target structures included five SMRFs of three, six, nine, twelve and fifteen stories. The results of this study showed that for low-rise frames, first mode spectral acceleration index is sufficient to accurately estimate demand. However, for high-rise frames, two parameters should be used to increase the accuracy. In addition, adding the product of the square of earthquake magnitude multiplied by distance to the model can significantly increase the accuracy of seismic demand estimation.

NARX 신경망을 이용한 철도 궤도틀림 추정 (Estimation of track irregularity using NARX neural network)

  • 김만철;최배성;김유희;신수봉
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.275-280
    • /
    • 2011
  • Due to high-speed of trains, the track deformation increases rapidly and may lead to track irregularities causing the track stability problem. To secure the track stability, the continual inspection on track irregularities is required. The paper presents a methodology for identifying track irregularity using the NARX neural network considering non-linearity in the train structural system. A simulation study has been carried out to examine the proposed method. Acceleration time history data measured at a bogie were re-sampled to every 0.25m track irregularity. In the simulation study, two sets of measured data were simulated. The second data set was obtained by a train with 10% more mass than the one for the first data set. The first set of simulated data was used to train the series-parallel mode of NARX neural network. Then, the track irregularities at the second time period are identified by using the measured acceleration data. The closeness of the identified track irregularity to the actual one is evaluated by PSD and RMSE.

  • PDF

Prediction model for whistler chorus waves responsible for energetic electron acceleration and scattering

  • Kim, Jin-Hee;Lee, Dae-Young;Cho, Jung-Hee;Shin, Dae-Kyu
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.94.1-94.1
    • /
    • 2013
  • Whistler mode chorus waves, which are observed outside the plasmasphere of the Earth's magnetosphere, play a major role in accelerating and scattering energetic electrons in the radiation belts. In this study we developed a predicting scheme of the global distribution of chorus by using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite data. First, we determined global spatial distributions of chorus activity, and identified fit functions that best represent chorus intensities in specific L-MLT zones. Second, we determined the specific dependence of average chorus intensity on preceding solar wind conditions (e.g., solar wind speed, IMF Bz, energy coupling degree) as well as preceding geomagnetic states (as represented by AE, for example). Finally, we combined these two results to develop the predicting functions for the global distribution and intensity of chorus. Implementing these results in the radiation belt models should improve the local acceleration effect by chorus waves.

  • PDF

기동장비용 지향구조물의 진동 감소 상태선정 연구 (A Study on Vibration Reduction Timing Selection in the Mobile Pointing System)

  • 유진호;이동주
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.112-119
    • /
    • 2007
  • In order to predict vibration trends occurred during vehicle drive, acceleration data was processed by using data processing algorithm with moving average and Hilbert transform. Specific mode constants of acceleration were obtained under various disturbance. Vehicle velocity, road condition, property of pointing structure were considered as factors which make change of vibration trend in vehicle dynamics. Results of signal processing were compared and analysed. Advanced performance of the timing selection algorithm from this study was verified by using simple equipment comparing with the deflection measurement laser system(Muzzle Reference System).

승용차 도심 주행패턴에 의한 연비 성능 분석 (A Study on the Fuel Economy based on the Driving Patterns for Passenger Car in the Metropolitan Area)

  • 정남훈;이우택;선우명호
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.25-31
    • /
    • 2003
  • There are a lot of factors influencing on the automobile fuel economy such as average speed, average acceleration, acceleration sum per kilometer, and so on. In this study, various driving data were recorded during road tests. The accumulated road test mileage in Seoul metropolitan area is around 1,300 kilometers. The data were analyzed by multivariate statistical techniques including correlation analysis, principal component analysis, and multiple linear regression analysis. The analyzed results show that the average trip time per kilometer is one of the most important factors to fuel consumption and the increase of the average speed is desirable for reducing emissions and fuel consumption.