• Title/Summary/Keyword: Accelerating degradation

Search Result 74, Processing Time 0.028 seconds

Analysis for Insulating Degradation Characteristics with Aging Time for Oil-filled Transformers and/or Correlation between using Linear Regression Method (유입식 변압기의 열화시간에 따른 절연 열화특성 및 선형회귀법을 이용한 상관관계 분석)

  • Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.693-699
    • /
    • 2010
  • General transformer's life is known as paper insulation' life. If a transformer is degraded by these aging factors, it is known that electrical, mechanical and chemical characteristics for transformer's oil-paper are changed. When the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. The paper breakdown is accompanied by an increase in the content of furanic compounds within the dielectric liquid. In this paper it is aimed at analysis on correlation between aging characteristics for insulating diagnosis of thermally aged paper. For investigating the accelerated aging process of oil-paper samples accelerating aging cell was manufactured for estimating variation of paper insulation during 500 hours at $140^{\circ}C$ temperature. To derive the results, it was performed analysis such as tensile strength(TS), depolymerization(DP), dielectric strength(DS), relative permittivity, water content(WC) and furan compound(FC) for aged paper. Also for analyzing correlation between insulating degradation characteristics, we used linear regression method. As as results of linear regression analysis, there was a close correlation between TS and DP. WC, FC. But dielectric strength was a weak correlation with aging time.

Estimating for Properties of Insulating Degradation for Cellulose paper with Aging Temperature and Correlation by Statistical Treatment (셀룰로오스 절연지의 열화온도에 따른 절연특성 및 통계처리에 의한 상관관계 규명)

  • Kim, Jae-Hoon;Kim, Dae-Sik;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.912-917
    • /
    • 2010
  • It was known that oil-filled transformer's life depended on insulating paper which was applied to transformers for insulating of transformer. Therefore when paper was aged, its electrical, mechanical and chemical characteristics were changed. Especially if operating temperature was high, paper was quickly damaged. As cellulose paper which was mainly used for solid insulation of transformers was degraded, the cellulose polymer chains broke down into shorter lengths and gases such as CO, $CO_2$, $CH_4$, $C_2H_4$ and so on were produced from paper. Also by-product known as furan compounds were producted from paper and it were dissolved within insulating oil. In this paper accelerating aging cell was aged during 60 hours at 100, 150, 180 and $200^{\circ}C$, respectively, so evaluating the chemical characteristics of cellulose paper by thermal. An it were performed analysis such as tensile strength(TS), dissolved gas analysis(DGA) and high performance liquid chromatography(HPLC). Also for analyzing of correlation between insulating degradation characteristics, it was performed linear regression method as statistical treatment.

A Study on the Electrode Characteristics of Hypo-Stoichiometric Zr-based Hydrogen Storage Alloys

  • Lee, Sang-Min;Kim, Seoung-Hoe;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.4
    • /
    • pp.197-210
    • /
    • 1999
  • The hydrogen storage performance and electrochemical properties of $Zr_{1-X}Ti_X(Mn_{0.2}V_{0.2}Ni_{0.6})_{1.8}$(X=0.0, 0.2, 0.4, 0.6) alloys are investigated. The relationship between discharge performance and alloy characteristics such as P-C-T characteristics and crystallographic parameters is also discussed. All of these alloys are found to have mainly a C14-type Laves phase structure by X-ray diffraction analysis. As the mole fraction of Ti in the alloy increases, the reversible hydrogen storage capacity decreases while the equilibrium hydrogen pressure of alloy increases. Furthermore, the discharge capacity shows a maxima behavior and the rate-capability is increased, but the cycling durability is rapidly degraded with increasing Ti content in the alloy. In order to analyze the above phenomena, the phase distribution, surface composition, and dissolution amount of alloy constituting elements are examined by S.E.M., A.E.S. and I.C.P. respectively. The decrease of secondary phase amount with increasing Ti content in the alloy explains that the micro-galvanic corrosion by multiphase formation is little related with the degradation of the alloys. The analysis of surface composition shows that the rapid degradation of Ti-substituted Zr base alloy electrode is due to the growth of oxygen penetration layer. After comparing the radii of atoms and ions in the electrolyte, it is clear that the electrode surface becomes more porous, and that is the source of growth of oxygen penetration layer while accelerating the dissolution of alloy constituting elements with increasing Ti content. Consequently, the rapid degradation (fast growth of the oxygen-penetrated layer) with increasing Ti substitution in Zr-based alloy is ascribed to the formation of porous surface oxide through which the oxygen atom and hydroxyl ion with relatively large radius can easily transport into the electrode surface.

  • PDF

Assessment and Applications of Multi-Degradable Polyethylene Films as Packaging Materials

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon;Lee, Sun-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2006
  • Degradation performance of environmentally friendly plastics that can be disintegrated by combination of sunlight, microbes in soil, and heat produced in landfills was evaluated for use in industries. Two multi-degradable master batches (MCC-101 and MCC-102 were manufactured, separately mixed with polyethylene using film molding machine to produce 0.025 mm thick films, and exposed to sunlight, microbes, and heat. Low- and high-density polyethylene (LDPE and HDPE) films containing MCC-101 and MCC-102 became unfunctional by increasing severe cleavage at the surface and showed high reduction in elongation after 40 days of exposure to ultraviolet light. LDPE and HDPE films showed significant physical degradation after 100 and 120 days, respectively, of incubation at $68{\pm}2^{\circ}C$. SEM images of films cultured in mixed mold spore suspension at $30^{\circ}C$ and 85% humidity for 30 days revealed accelerated biodegradation on film surfaces by the action of microbes. LDPE films containing MCC-l01 showed absorption of carbonyls, photo-sensitive sites, at $1710\;cm${-1}$ when exposed to light for 40 days, whereas those not exposed to ultraviolet light showed no absorption at the same frequency. MCC-101-based LDPE films showed much lower $M_w$ distribution after exposure to UV than its counterpart, due to agents accelerating photo-degradation contained in MCC-101.

Novel Polyhydroxybutyrate-Degrading Activity of the Microbulbifer Genus as Confirmed by Microbulbifer sp. SOL03 from the Marine Environment

  • Park, Sol Lee;Cho, Jang Yeon;Kim, Su Hyun;Lee, Hong-Ju;Kim, Sang Hyun;Suh, Min Ju;Ham, Sion;Bhatia, Shashi Kant;Gurav, Ranjit;Park, ee-Hyoung;Park, Kyungmoon;Kim, Yun-Gon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.27-36
    • /
    • 2022
  • Ever since bioplastics were globally introduced to a wide range of industries, the disposal of used products made with bioplastics has become an issue inseparable from their application. Unlike petroleum-based plastics, bioplastics can be completely decomposed into water and carbon dioxide by microorganisms in a relatively short time, which is an advantage. However, there is little information on the specific degraders and accelerating factors for biodegradation. To elucidate a new strain for biodegrading poly-3-hydroxybutyrate (PHB), we screened out one PHB-degrading bacterium, Microbulbifer sp. SOL03, which is the first reported strain from the Microbulbifer genus to show PHB degradation activity, although Microbulbifer species are known to be complex carbohydrate degraders found in high-salt environments. In this study, we evaluated its biodegradability using solid- and liquid-based methods in addition to examining the changes in physical properties throughout the biodegradation process. Furthermore, we established the optimal conditions for biodegradation with respect to temperature, salt concentration, and additional carbon and nitrogen sources; accordingly, a temperature of 37℃ with the addition of 3% NaCl without additional carbon sources, was determined to be optimal. In summary, we found that Microbulbifer sp. SOL03 showed a PHB degradation yield of almost 97% after 10 days. To the best of our knowledge, this is the first study to investigate the potent bioplastic degradation activity of Microbulbifer sp., and we believe that it can contribute to the development of bioplastics from application to disposal.

Molecular analysis on the ODC antizyme from flounder (Parlichthys olivaceus)

  • Seo, Yong-Bae;Lee, Jae-Hyung;Kim, Young-Tae
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.733-735
    • /
    • 2003
  • Ornithine decarboxylase (ODC) is a key enzyme on the regulation of cellular polyamines. ODC antizyme is a protein that represses ODC through accelerating enzymatic degradation by the 26S proteasome. We have isolated two distinct antizyme cDNA clones (AZS and AZL) from a brain cDNA library constructed with flounder (Paralichthys olivaceus). AZS and AZL cDNA clones were encoding 221 and 218 residues long respectively and revealed 57.7% amino acids sequence identity. The presence of two antizymes mRNA were detected in brain, kidney, liver, and embryo.

  • PDF

Optimal Design of Discrete Time Preview Controllers for Semi-Active and Active Suspension systems

  • Youn, Il-Joong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.807-815
    • /
    • 2000
  • In this paper, modified discrete time preview control algorithms for active and semi-active suspension systems are derived based on a simple mathematical 4 DOF half-car model. The discrete time preview control laws for ride comfort are employed in the simulation. The algorithms for MIMO system contain control strategies reacting against body forces that occur at cornering, accelerating, braking, or under payload, in addition to road disturbances. Matlab simulation results for the discrete time case are compared with those for the continuous time case and the appropriateness of the discrete time algorithms are verified by the of simulation results. Passive, active, and semi-active system responses to a sinusoidal input and an asphalt road input are analysed and evaluated. The simulation results show the extent of performance degradation due to numerical errors related to the length of the sampling time and time delay.

  • PDF

Development of Aging Equipment and Testing Method for UV Effected Degradation Characteristics of Silicone Rubber (자외선 열화에 의한 실리콘고무의 열화 특성 연구를 위한 열화장치 및 시험방법의 개발)

  • Lee, Jeong-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.93-96
    • /
    • 2007
  • In this paper, the testing equipment for evaluating aging characteristics of outdoor silicone rubber insulator resulting from the environmental aging effect with regards to sunlight(UV) was developed. Influence of sunlight effect aging is seriously increase due to destruction of ozone layer which is occurred by consumption of fossil fuel. For this purpose, silicone rubber was aged under the artificial sunlight by exposure of xenon lamp radiation in the accelerating aging chamber and various test and analysis were performed such as breakdown strength, contact angle. And FT-IR analysis has been followed.

  • PDF

Maintenance Policies Following the Expiration of Two-Dimensional Free Replacement Warranty (2차원 무료 보증이 종료된 이후의 보전정책)

  • Kim, Ho-Gyun
    • Journal of Applied Reliability
    • /
    • v.15 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • Maintenance plays an important role in keeping product availability, reliability and quality at an appropriate level. In this paper, two-types of maintenance policies are studied following the expiration of two-dimensional (2D) free replacement warranty. Both the fixed-maintenance-period policy and the variable-maintenance-period policy are based on a specified region of the warranty defined in terms of age and usage where all failures are minimally repaired. An accelerating failure time (AFT) model is used to allow for the effect of usage rate on product degradation. The maintenance model that arises following the expiration of 2D warranty is discussed. The expected cost rates per unit time from the user's point of view are formulated and the optimal maintenance policies are determined to minimize the expected cost rate to the user. Finally numerical examples are given to illustrate the optimal maintenance polices.

Study on the dyestuff for acceration solar evaporation (함수의 천일증발촉진성 색소에 관한 시험)

  • 장판섭
    • YAKHAK HOEJI
    • /
    • v.3 no.1
    • /
    • pp.26-34
    • /
    • 1957
  • The solar evaporation method is one of the most important and popular salt manufecturing method in Korea. The rate of evaporation of sea water depends on a complex climate factors. Of these factors, the most important is solar radiation and in particular the extent to which it is absorbed in the brine. By the addition of suitable dyestuff, a further increase in absorption is obtained and can result in all the radiation entering the brine being made available as heat. "Solivap Green", one of several dyestuffs which have been suggested for accelerating solar evaporation, was tested in this experiment. The results of the experiment. 1. Increase the evaporation rate of brine up to 20-25%. 2. Elevate the temperature of brine 2-$4^{\circ}C$. higher than that of brine adding no dyestuff. 3. Optimum dyestuff concentration is 25-30 mg/L and allowable maximum concentration can not exceeded 1000 mg/$m^2$ (50 mg/L). 4. Addition of dyestuff does not cause the degradation of salt produced. 5. A conversion table which indicates the concentrations for various depths of brine was prepared for engineering purpose. 6. Absorption spectrum of the dyestuff was studies, but toxicological and structural studies for the dyestuff have not been done in this experiment.

  • PDF