• Title/Summary/Keyword: Accelerated Testing Method

Search Result 119, Processing Time 0.025 seconds

Mechanical Life Prediction of a Relay by Accelerated Life Tests (가속시험에 의한 릴레이의 기계적 수명평가에 관한 연구)

  • Kwon Young-Il;Han In-Su
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.75-82
    • /
    • 2005
  • In this paper, accelerated life testing(ALT) method and procedures for a are developed and applied to assess the reliability of the product. Relay is a device that can open and close the electric circuit electrically and is used for protecting and controlling the load. In this study, an accelerated life test method for predicting the mechanical life of a relay is developed using the relationship between stresses, failure mechanism and life characteristics of products. Using the ALT method, we performed life tests and analyzed the tests results. The proposed method and procedures may de extended and applied to testing similar kinds of products to reduce test times and costs of the tests remarkably.

  • PDF

Development of accelerated life test method for mechanical components using Weibull-IPL(Inverse Power Law) model (와이블-역승법을 이용한 기계류부품의 가속시험 방법 개발)

  • Lee, Geun-Ho;Kim, Hyoung-Eui;Kang, Bo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.445-450
    • /
    • 2003
  • This study was performed 10 develop the accelerated life test method using Weibull-IPL(Inverse Power Law) model for mechanical components. Weibull-IPL model is concerned with determining the assurance life with confidence level and the accelerated life test time From the relation of weibull distribution factors and confidence limit, the testing times on the no number of failure acceptance criteria arc determined. The mechanical components generally represent wear and fatigue characteristics as a failure mode. IPL based on the cumulative damage theory is applied effectively the mechanical components to reduce the testing time and to achieve the accelerating test conditions. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% confidence level for one test sample. According to IPL, because test time call be shorten in case increase test load test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7.

  • PDF

The Method of Determining Stress Levels Regarding the Electrical ALT through Optical Temperature Sensor

  • Ryu, Haeng-Soo;Han, Gyu-Hwan;Yoon, Nam-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.184-191
    • /
    • 2008
  • Electrical endurance is the critical characteristic of Magnetic contactors(MCs), which are widely used in such power equipment as elevators, cranes, and factory control rooms in order to close and open control circuits. Testing time, however, is not short in typical cases in which some method of reducing the testing period is required. This study shows the method of determining the stress level of electrical ALT(Accelerated Life Test) through optical temperature sensor and the relationship between 0.05 s and 0.1 s for on-time. The tool used for analyzing the test result is MINITAB. I will propose the method of determining the optimized stress level through optical temperature sensor, which will contribute to minimize the testing time and development period and also raise the product reliability.

Time-Temperature Superposition Behavior for Accelerated Fatigue Lifetime Testing of Polycarbonate(PC) (폴리카보네이트(PC)의 가속 피로수명 시험을 위한 시간-온도 호환성)

  • Kim Gyu-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.976-984
    • /
    • 2006
  • Time-temperature superposition has been studied to determine the long-term fatigue life over millions of cycles for glassy polymers. π le superposition is supposed to make an accelerated lifetime testing (ALT) technique possible. Dog-bone shaped specimens made of carbon filled Polycarbonate (PC) were tested under fatigue, based on the stress-lifetime approach (S-N curve). Fatigue-induced localized yield-like deformation is considered as the defect leading to fatigue and its evolution behavior is characterized by a modified energy activation model in which temperature is considered as fatigue acceleration factor. This model allows the reduced time concept to account for effects of different temperature in short-term fatigue data to determine long-term fatigue life through the use of time-temperature superposition that is applicable under a low frequency and isothermal conditions. The experimental results validated that the proposed technique could be a possible method for accelerated lifetime testing (ALT) of time-dependent polymeric materials.

Lifetime Prediction of RF SAW Duplexer Using Accelerated Life Testing (가속수명시험을 이용한 RF SAW 듀플렉서의 수명예측)

  • Kim, Young-Goo;Kim, Tae-Hong;Kang, Sang-Gee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.616-618
    • /
    • 2014
  • In this paper, we designed the accelerated life testing(ALT) and presented the lifetime prediction method of the RF SAW duplexer. We determined RF input power as an accelerated stress when designing an accelerating life testing and defined the lifetime of the duplexer as the period during which the insertion loss increased by 0.5[dB]. Lifetime prediction results of duplexer was estimated for 82,900hours at an ambient temperature of $85^{\circ}C$ and RF input power of 30[dBm].

Service life prediction of rubber seal materials for immersion tunnel by accelerated thermal degradation tests (가속 열 노화시험을 이용한 침매터널용 고무 씰 소재의 사용수명 예측)

  • Park, Joon-Hyung;Park, Kwang-Hwa;Park, Hyeong-Geun;Kwon, Young-Il;Kim, Jong-Ho;Sung, Il-Kyung
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.275-290
    • /
    • 2009
  • This paper considers accelerated thermal degradation tests which are performed for rubber seal materials used for undersea tunnels constructed by immersion method. Three types of rubber seals are tested; rubber expansion seal, omega seal, and shock absorber hose. Main ingredient of rubber expansion seal is EPDM(Ethylene Propylene Diene Monomer) and that of both omega seal and shock absorber hose is SBR(Styrene Butadiene Rubber). The accelerated stress is temperature and an Arrhenius model is introduced to describe the relationship between the lifetime and the stress. From the accelerated degradation tests, dominant failure mode of the rubber seals is found to be the loss of elongation. The lifetime distribution and the service life of the rubber seals at use condition are estimated from the test results. The acceleration factor for three types of rubber seals are also investigated.

  • PDF

Development of Reliability Design Methodology Using Accelerated Life Testing and Taguchi Method (가속 수명시험과 다구치 방법을 활용한 신뢰성설계 방법의 개발)

  • Kim, Min;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.407-414
    • /
    • 2002
  • The inherent reliability of a product is primarily determined in the design stage, and therefore, design engineers should be able to design reliability into the product in an efficient manner. Especially, the product should be designed such that its reliability is robust to various noise factors encountered in production and field environments. The Taguchi method can be effectively used for this purpose. However, there exist only a few attempts to integrate the Taguchi method with reliability design, and in addition, the existing works do not sufficiently consider the robustness and/or the distinction between noise and acceleration factors. This paper develops a unified approach to robust reliability design assuming that accelerated life tests are conducted at each combination of design and noise conditions. First, an experimental structure for assigning not only acceleration but also noise factors is presented. Second, the reliability at the use condition is estimated using the assumed accelerated life test model. Third, reliabilities are transformed into 'efforts' using an effort function which reflects the degree of difficulty involved in improving the reliability. Finally, an optimal setting of design parameters is determined based on the mean and standard deviation of the effort values. The above approach is illustrated with an example of a paper feeder design.

S-N Curve Estimation of a KTX Structure for an Accelerated Life Testing (가속수명시험을 위한 KTX 구조물의 S-N 선도 추정)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Su-Han
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.384-389
    • /
    • 2008
  • An accelerated fatigue test is essentially required to maintain the reliability of the actual structure of KTX under operation conditions. However, actual fatigue life cannot be obtained if specimens are not adequate to the conventional fatigue test. Moreover component maker did not provide data of loading stress (S) - cycles at the failure (N). In this study, we suggest a prediction method of the S-N curve for establishing an accelerating test under various load levels. Load history was acquired from the field tests. A Rainflow method was used on the cycle counting of the field load data, and then, an S-N curve was obtained through the iteration process under the condition that the damage index satisfies to 1 in the Miner's rule.

  • PDF

Accelerated Life Test and Data Analysis of the Silver Through Hole Printed Wiring Board (가속수명시험을 이용한 은도통홀 인쇄회로기판의 신뢰성연구)

  • 전영호;권이장
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.2
    • /
    • pp.15-27
    • /
    • 1997
  • This paper describes a highly accelerated life test (HALT, USPCBT) method for rapid qualification testing of STH PWB(Silver Through Hole Printed Wiring Boards). This method was carried out to be an alternative to the present time-consuming standard 1344 hours life testing(THB). The accelerated life test conditions were $121^{\circ}C$/95%R.H. at 50V bias and without bias. Their results are compared with those observed in the standard 1344 hours life test at $40^{\circ}C$/95%R.H. at 50V bias and without bias. The studies were focused on the samples time-to-failure as well as the associated conduction and failure mechanisms. The abrupt drop of insulation resistance is due to the absorption of water vapour. And the continuous drop of insulation resistance is due to the Ag migration. The ratios of time-to-failure of HALT(USPCBT) to THB were 25 and 11 at 50V bias and without bias respectively.

  • PDF

Design and Analysis of Accelerated Life Tests (ALT) for Small Power Relays (소형 계전기에 대한 가속수명시험 설계 및 분석)

  • 권영일;유영철
    • Journal of Applied Reliability
    • /
    • v.4 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • Accelerated life test models and procedures are developed to assess the reliability of typical power relays. The main function of relays is to control high voltage circuits by operating low voltage circuits. The accelerated life test method and test equipments are developed using the relationship between stresses and life characteristics of the products. Using the developed accelerated life test method, the parameters of the ALT model and lifetime distribution are estimated and the reliability of the relays at use condition is assessed. The proposed accelerated life test method and procedure may be extended and applied to testing similar kinds of products to reduce test time and costs of the tests remarkably.

  • PDF