• Title/Summary/Keyword: Accelerated Degradation

Search Result 511, Processing Time 0.032 seconds

Material Degradation of X20 Steel (12Cr-1MoVNi) for Boiler Tube of Power Plant (발전설비 보일러 튜브용 X20강의 가속열처리에 의한 재질 열화)

  • Choe, Byung-Hak;Yoon, Kee Bong;Lee, Nam-Hyuck;Kim, Sin;Lee, Gil-Jae;Kim, Kwang-Ho;Kwon, Dong Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.276-282
    • /
    • 2008
  • Material degradation of Cr steels in boiler tubes was accompanied by the microstructural changes including carbide behavior and crack formation. The microstructural change and the mechanical behavior of hardness and creep properties in accelerated heat-treatments were studied in order to identify the material degradation of the X20 Cr steel. The degradation behavior was occurred in the hardness increasing followed by decreasing due to carbide dissolution and precipitation.

Degradation and hole formation of the Te-based thin films (Te을 기본으로 한 박막에서의 열화와 미세구멍형성에 관한 연구)

  • Lee, Hyun-Young;Park, Tae-Sung;Um, Jeong-Ho;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.207-209
    • /
    • 1987
  • This paper reports the effect of additive elements such as Bi, Sb on degradation and hole formation of the Te-Se thin films. Changes in light transmission were used to monitor the degradation rate of thin Te films in an accelerated temperature-humidity environment. In thin accelerated temperature-humidity environment, $(Te_{86}Se_{14})_{70}Bi_{30}$ thin film was stable and $(Te_{86}Se_{14})_{50}Sb_{50}$ thin film was unstable in comparison with the other films that used in this experiment. The hole formation was carried out in the Te-based thin films.

  • PDF

A Study on the Surface Properties of Epoxy Insulator by Water Degradation (수분열화에 의한 에폭시절연재료의 표면특성에 관한 연구)

  • 임경범;이백수;김종택;정무영;황명환;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.199-202
    • /
    • 1998
  • In examining application of polymer as electrical insulators, it is very important to perform accelerated aging test substituted the process which polymer insulator is degraded for long-time by the process of short-time. The purpose of this paper is to examine the properties of water degradation which affect on the efficiency of epoxy insulator. To do this, the surface properties on epoxy insulating material have been investigated after long-time accelerated degradation in boiling water condition. The experimental results showed the contact angle and surface resistivity after treatment to decrease the sample of water treatment. In dielectric properties, dielectric constant was increased by the aging development with water treatments.

  • PDF

Optimal Design of Constant Stress Accelerated Life Tests Using Degradation Phenomenon Based on a Brownian Motion (브라운 운동을 따르는 열화현상을 이용한 일정스트레스 가속수명시험의 최적설계)

  • 서순근;김갑석;하천수
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.74-87
    • /
    • 1998
  • This study considers optimal design of accelerated life tests under constant stress using that the first passage time to cross a critical boundary through amount of accumulated degradation has an inverse Gaussian distribution when the degradation process follows to a Brownian motion with positive drift of log linear function of stress. Optimum plans for Type I censoring are derived by minimizing the asymptotic variance of estimated quantiles at the use stress. Sensitivity analyses are also conducted to see how sensitive the optimality criterion is with respect to the uncertainties involved in the guessed values.

  • PDF

An Accelerated Degradation Test of Electric Double-Layer Capacitors (전기이중층커패시터의 가속열화시험)

  • Jung, Jae-Han;Kim, Myung-Soo
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.67-78
    • /
    • 2012
  • An electric double-layer capacitor(EDLC) is an electrochemical capacitor with relatively high energy density, typically hundreds of times greater than conventional electrolytic capacitors. EDLCs are widely used for energy storage rather than as general-purpose circuit components. They have a variety of commercial applications, notably in energy smoothing and momentary-load devices, and energy-storage and kinetic energy recovery system devices used in vehicles, etc. This paper presents an accelerated degradation test of an EDLC with rated voltage 2.7V, capacitance 100F, and usage temperature $-40^{\circ}C{\sim}65^{\circ}C$. The EDLCs are tested at $50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$, respectively for 1,750hours, and their capacitances are measured at predetermined times by constant current discharge method. The failure times are predicted from their capacitance deterioration patterns, where the failure is defined as 30% capacitance decrease from the initial one. It is assumed that the lifetime distribution of EDLC follows Weibull and Arrhenius life-stress relationship holds. The life-stress relationship, acceleration factor, and $B_{10}$ life at design condition are estimated by analyzing the accelerated life test data.

A Comparative Study of Life Prediction using Accelerated Aging Tests and Machine Learning Techniques to Predict the Life of Composite Materials including CNT Materials (CNT소재를 포함하는 복합소재의 수명예측을 위해 가속열화 시험 및 머신러닝 기법을 이용한 수명예측 비교 연구)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.456-458
    • /
    • 2022
  • Due to the environmental regulations of the International Maritime Organization, shipyards are conducting various researches to improve the efficiency of ships, and efforts are being made to reduce the weight of ships. Recently, composite materials including CNT materials have the advantage of being able to reduce weight by 40% or more compared to general steel plate materials, and have the advantage of being able to be used as a substitute for ship clamps or door skins. Therefore, in this study, to predict the life of composite materials including CNT materials, the results were compared through the accelerated deterioration test method and the life prediction using machine learning techniques. The accelerated degradation test used the Arrhenius model equation, and the machine learning method predicted the life using a regression analysis algorithm.

  • PDF

Flow Induced Material Degradation In Power Plant Secondary Systems-A Review

  • Kim, I.S.;Van Der Helm, M.;Ballinger, R.G.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.148-163
    • /
    • 1998
  • Flow Induced Material Degradation (FIMD) is reviewed focusing on Flow Accelerated Corrosion (FAC) models. Several examples of FAC related incidents are described, which include nuclear and fossile power plants. Lastly, mitigation techniques such as inspection, material selection, water chemistry, temperature, and hydrodynamic factor are discussed.

  • PDF

A Study on the Over-current Characteristics of IV Insulated Wire Sheath According to Accelerated Degradation (가속열화에 따른 IV절연전선 피복의 과전류 특성에 관한 연구)

  • Kim, Si-Kuk;Choi, Su-Gil
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.48-56
    • /
    • 2018
  • This paper reports the results of a study on the over-current characteristics of IV insulated wire sheath according to accelerated degradation. In order to examine the degradation of a IV insulated wire sheath through insulation, acceleration degradation experiments were performed using the Arrhenius equation of acceleration life test models; test samples with equivalent lives of 0, 10, 20, 30 and 40 years were prepared. Then allowed currents with over-current of 100%~500% were introduced to measure the times of first generation of smokes and carbonization in the wire sheath, and it was found that the times of first generation of smokes and carbonization in the wire sheath decreased as the equivalent life increased. In more detail, when 270% over-current is applied, the electrical fire risk of equivalent life of 40 years increased by approximately 3.2 times based on equivalent life of 0 years. Also, when the over-current was 255% and 260%, carbonization occurred only in the equivalent life of 40 years, and the fire risk according to the accelerated degradation was increased dramatically. In addition, FT-IR and SEM analyzes were used to confirm the characteristics and surface changes of IV insulated wire sheath according to the equivalent life.

A Study on the Effects of Contaminant Types on the Wear Degradation Characteristics in Internal Gear Pumps (불순물 입자의 유형에 따른 내접기어 펌프에서의 마모열화 특성 연구)

  • Shin, Jung-Hun;Ji, Kyung-Ryeol;Kim, Hyoung-Eui
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • The mechanical equipments which are exposed to impure environment undergo significant reductions in their own lifetimes. Several environmental test procedures have been developed to analyze these phenomena. Moreover in the industry to require shorter development duration, accelerated life testers artificially add test containments into machines. In this research JIS Z 8901 test powder was added into internal gear pumps which are used as oil pumps in vehicles and thus the effects of the addition on the degradation of the pumps were examined. Three kinds of contaminants were selected. Two of the contaminants are identical in particle size but different in the composition of the ingredients. The other pair have identical ingredients and composition but different particle size. The quantity of contaminants was also an interesting factor in this study. The results show that each JIS contaminant caused notable degradation in the discharge flow characteristic of pumps while friction torque degradation did not have any tendency. Finally leakage rates were deduced and equivalent wear volume ratios were calculated.

Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test (필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가)

  • Kim, Duck-Jae;Yun, Young-Ju;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.