A Comparative Study of Life Prediction using Accelerated Aging Tests and Machine Learning Techniques to Predict the Life of Composite Materials including CNT Materials

CNT소재를 포함하는 복합소재의 수명예측을 위해 가속열화 시험 및 머신러닝 기법을 이용한 수명예측 비교 연구

  • Published : 2022.05.26

Abstract

Due to the environmental regulations of the International Maritime Organization, shipyards are conducting various researches to improve the efficiency of ships, and efforts are being made to reduce the weight of ships. Recently, composite materials including CNT materials have the advantage of being able to reduce weight by 40% or more compared to general steel plate materials, and have the advantage of being able to be used as a substitute for ship clamps or door skins. Therefore, in this study, to predict the life of composite materials including CNT materials, the results were compared through the accelerated deterioration test method and the life prediction using machine learning techniques. The accelerated degradation test used the Arrhenius model equation, and the machine learning method predicted the life using a regression analysis algorithm.

국제해사기구의 환경규제로 조선소에서는 선박의 효율향상을 위한 다양한 연구를 추진하고 있으며, 선박의 무게절감을 위한 노력이 진행 중이다. 최근, CNT소재를 포함하는 복합소재는 일반 철판 소재 대비 40% 이상 무게절감이 가능한 장점이 있어, 선박의 클램프나 도어스킨으로 대체사용이 가능한 장점이 있다. 이에, 본 연구에서는 CNT소재를 포함하는 복합소재의 수명예측을 위해, 가속열화시험 방법과 머신러닝 기법을 이용한 수명예측을 통해 결과를 비교하였다. 가속열화시험은 아레니우스 모델식을 이용하였고, 머신러닝 기법은 회기분석 알고리즘을 이용하여 수명을 예측하였다.

Keywords