• Title/Summary/Keyword: Academia

Search Result 16,247, Processing Time 0.036 seconds

Technology Management Strategy for Activating the Industry-Academia Cooperation (산학협력 활성화를 위한 기술경영전략에 관한 연구)

  • Lee, Won-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.211-219
    • /
    • 2014
  • This paper studies the technology management strategy for activating the industry-academia cooperation in open innovation environment. For this, the importance and concept of technology management balancing the internal innovation and utilization of external innovation resources, and industry-academia cooperation were theoretically reviewed. For the successful technology management in open innovation environment firms should adopt the industry-academia cooperation strategy. The technology management strategy for activating the industry-academia cooperation of the firm can be summarized as follows; Firstly, technology strategy for academia-industry cooperation utilizing the strategic technology roadmap should be prepared and executed. Secondly, the firm should adopt the open innovation system and transform their NIH(Not-Invented-Here) culture for open culture. Finally, for activating the networking with various innovation actors, industry-academia cooperation supporting system should be prepared.

A Survey Study on a Activating Strategy for College Academia-industrial Cooperation with Industry's Needs for 3D Printing and College Graduate (3D 프린팅과 전문대학 인력에 대한 기업 수요조사를 통한 전문대학 산학협력 활성화 방안 연구)

  • Ryu, Chung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.57-65
    • /
    • 2016
  • Academia-industrial cooperation policy is essential to enhance national competitiveness in Korea. Although government and academia have invested in policies and supported industries, academia-industrial cooperation is not operated actively. This is one of the reasons why industrial demand for cooperation has continuously decreased. There are thoughts that universities' outcomes are larger than colleges' outcomes in academia-industrial cooperation, which could be a barrier to academia-industrial cooperation for colleges. It is important to understand industry demands in order to activate this type of cooperation. We propose a way to achieve this based on survey data for 3D printing and college graduates. Interactive cooperation among industries, colleges, and universities is suggested in the process of technical commercialization, such as TRL (Technology Readiness Level).

An Immunological Approach to ABA Receptor and its Gene

  • Xie Zhou;Jin, Zhen-hua;Zheng, Zhi-fu;Kai Xia;Zhang, Neng-gang;Wan, Yin-sheng;Sang, Yong-ming;Chen, Kao-shan;Liu, Shi-ming
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.68-78
    • /
    • 1996
  • Two types of immunoloigcal probes, anti-ABBP Abs, have been developed. The purified ABBP from ABA-C1-BSA-sepharose 4B column was identified by PAGE and appeared in one band of about 56KD, as well as showed a specific binding ability and a high affinity for ABA (Kd2.0$\times$10-9 mol/L). Unexpectedly, the existence of rRNA with a length of around 300 nucleotides could be found, when the ABBP was digested with proteinase K and identified by eletrophorsis on an agarose gel (1%). As a result, about 120 cDNA clones coding maize 17s RNA and only one cDNA clone coding ABBP (24cDNA) were obtained from 200,000 seperated phage plaques by the anti-ABBP pAbs. 24cDNA had 1075bp and contained an open reading frame coding 254 amino acids. The anti-idiotypic Ab raised against an ABA MAb showed the ability of either mimicking ABA or competing with ABA. The localization of ABBPs in plant cell was investigated.

  • PDF

All Non-Dopant RGB Composing White Organic Light-Emitting Diodes

  • Yeh, Shi-Jay;Chen, Hung-Yang;Wu, Min-Fei;Chan, Li-Hsin;Chiang, Chih-Long;Yeh, Hsiu-Chih;Chen, Chin-Ti;Lee, Jiun-Haw
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1583-1586
    • /
    • 2006
  • All non-dopant white organic light-emitting diodes (WOLEDs) have been realized by using solid state highly fluorescent red bis(4-(N-(1- naphthyl)phenylamino)phenyl)fumaronitrile (NPAFN) and amorphous bipolar blue light-emitting 2-(4- diphenylamino)phenyl-5-(4-triphenylsilyl)phenyl- 1,3,4-oxadiazole (TPAOXD), together with well known green fluorophore tris(8- hydroxyquinolinato)aluminum $(Alq_3)$. The fabrication of multilayer WOLEDs did not involve the hard-tocontrol doping process. Two WOLEDs, Device I and II, different in layer thickness of $Alq_3$, 30 and 15 nm, respectively, emitted strong electroluminescence (EL) as intense as $25,000\;cd/m^2$. For practical solid state lighting application, EL intensity exceeding $1,000\;cd/m^2$ was achieved at current density of $18-19\;mA/cm^2$ or driving voltage of 6.5-8 V and the devices exhibited external quantum efficiency $({\eta}_{ext})$ of $2.6{\sim}2.9%$ corresponding to power efficiency $({\eta}_P)$ of $2.1{\sim}2.3\;lm/W$ at the required brightness.

  • PDF