• Title/Summary/Keyword: Abutment screw length

Search Result 39, Processing Time 0.023 seconds

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE IMPLANT FRACTURES

  • Kim Yang-Soo;Kim Chang-Whe;Lim Young-Jun;Kim Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.295-313
    • /
    • 2006
  • Statement of problem. Higher fracture rates were reported for Branemark implants placed in the maxilla and for 3.75 mm diameter implants installed in the posterior region. Purpose. The purpose of this study was to investigate the fracture of a fixture by finite element analysis and to compare different diameter of fixtures according to the level of alveolar bone resorption. Material and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for the 3i implant systems. Models were processed by the software programs HyperMesh and ANSA. Three-dimensional finite element models were developed for; (1) a regular titanium implant 3.75 mm in diameter and 13 mm in length (2) a regular titanium implant 4.0 mm in diameter and 13 mm in length (3) a wide titanium implant 5.0 mm in diameter and 13 mm in length each with a cementation type abutment and titanium alloy screw. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized as 650 N, and round and flat type prostheses were 12 mm in diameter, 9 mm in height were loaded to 600 N. Four loading offset points (0, 2, 4, and 6 mm from the center of the implants) were evaluated. To evaluate fixture fracture by alveolar bone resorption, we investigated the stress distribution of the fixtures according to different alveola. bone loss levels (0, 1.5, 3.5, and 5.0 mm of alveolar bone loss). Using these 12 models (four degrees of bone loss and three implant diameters), the effects of load-ing offset, the effect of alveolar bone resorption and the size of fixtures were evaluated. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView programs were used for post processing. Results. The results from our experiment are as follows: 1. Preload maintains implant-abutment joint stability within a limited offset point against occlusal force. 2. Von Mises stress of the implant, abutment screw, abutment, and bone was decreased with in-creasing of the implant diameter. 3. With severe advancing of alveolar bone resorption, fracture of the 3.75 and the 4.0 mm diameter implant was possible. 4. With increasing of bending stress by loading offset, fracture of the abutment screw was possible.

STRESS OF DENTAL IMPLANT ABUTMENT SCREW BY THE TIGHTENING TORQUE (조임 회전력에 따른 치과 임플랜트 지대나사의 응력에 관한 연구)

  • Lee, Won-Joo;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.721-737
    • /
    • 1998
  • Abutment screw loosening of implant restorations is a common problem in the treatment of dental implant. The purpose of this study was to calculate stress and preload from the elongation measurements and to determine maximum tightening torque without plastic deformation of the screw. The length of each gold alloy UCLA screw was measured after tightening to the manufacturer's recommended torque of 32 N-cm. Similarity, titanium UCLA screws were measured after tightening to the manufacturer's recommended torque of 20 N-cm. Loosening torque was also measured after tightening to 32 N-cm torque for gold alloy abutment screws and 20 N-cm for titanium abutment screws. The results were as follows ; 1. There was a regressive relationship between screw elongation and tightening torque (gold alloy : $r^2=0.987$, titanium : $r^2=0.978$), and the mean preload calculated from elongation measurements was $501.11{\pm}26.85\;N$ (gold alloy) and $399.43{\pm}7.61\;N$ (titanium). 2. Stress calculated for the gold alloy and titanium screws at maximum recommended tightening torque was less than 60% of their respective yield strengths and with-in the elastic range. Maximum tightening torque without plastic deformation was 61 N-cm (gold alloy) and 39 N-cm (titanium). 3. For titanium screws, there was a significant difference between loosening after trial 1 and loosening after trials 2 to 5 (p<0.05). No statistically significant difference was seen in mean loosening torques between the first and subsequent trials for gold alloy screws.

  • PDF

Sinking and fit of abutment of locking taper implant system

  • Moon, Seung-Jin;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • STATEMENT OF PROBLEM. Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE. In this study, Bicon$^{(R)}$ Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS. 10 Bicon$^{(R)}$ implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS. It was evident, that the amount of abutment sinking in Bicon$^{(R)}$ Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at $0.45{\pm}0.09\;mm$. CONCLUSION. Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location.

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

Fit analysis of CAD-CAM custom abutment using micro-CT (Micro-CT를 이용한 맞춤형 CAD-CAM 지대주의 적합성 분석)

  • Min, Gwang-Seok;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.370-378
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate screw joint stability and sagittal fit between internal connection implant fixtures of two different manufacturers and customized abutments. Materials and methods: Internal connection implant systems from two different manufacturers (Biomet 3i system, Astra Tech system) were selected for this study (n=24 for each implant system, total n=48). For 3i implant system, half of the implants were connected with Ti ready-made abutments and the other half implants were connected with Ti CAD-CAM custom ones of domestic-make (Myplant, Raphabio Co., Seoul, Korea) and were classified into Group 1 and Group 2 respectively. Astra implants were divided into Group 3 and Group 4 in the same way. Micro-CT sagittal imaging was performed for fit analysis of interfaces and preloading reverse torque values (RTV) were measured. Results: In the contact length of fixture-abutment interface, there were no significant differences not only between Group 1 and Group 2 but also between Group 3 and Group 4 (Mann-Whitney test, P>.05). However, Group 2 and Group 4 showed higher contact length significantly than Group 1 and Group 3 in abutment-screw interface as well as fixture-screw one (Mann-Whitney test, P<.05). In addition, RTV was lower in CAD-CAM custom abutments compared to ready-made ones (Student t-test, P<.05). Conclusion: It is considered that domestically manufactured CAD-CAM custom abutments have similar fit at the fixture abutment interface and it could be used clinically. However, RTV of CAD-CAM custom abutments should be improved for the increase of clinical application.

Influence of diameter, length, and platform shape of implant fixture on the stress distribution in and around the screw type implant (나사형 임플란트 고정체의 길이, 직경, 플랫폼 형태에 따른 임플란트와 주위조직의 응력분포)

  • Kang, Ji-Eun;Chung, Hyun-Ju;Ku, Chul-Whoi;Yang, Hong-So
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.277-288
    • /
    • 2002
  • Seven finite element models were constructed in mandible having single screw-type implant fixture connected to the premolar superstructure, in order to evaluate how the length, diameter and platform shape of a screw-type fixture influence the stress in the supporting tissue around fixtures. Each finite element model was varied in terms of length, diameter, and platform shape of the fixture. In each model, 250N of vertical load was placed on the central pit of an occlusal plane and 250N of oblique load placed on the buccal cusp. The stress distribution in the supporting tissue and the other components was analysed using 2-dimensional finite element analysis and the maximum von Mises stress in each reference area was compared. Under lateral loading, the stress was larger at the abutment/fixture interface, and in the crestal bone, compared to the stress pattern under vertical loading. The amount of stress at the superstructure was similar regardless of the length, diameter and platform shape of a fixture. Around the longer fixture, the stress was decreased at the bone crest and subjacent cancellous bone and increased in the cancellous bone area apical to the fixture. Around the wider fixture, the stress was decreased at the abutment/fixture interface, and the bone crest and increased in the cancellous bone area apical to the fixture. Around the fixture having wider platform, less stress was produced at the abutment/fixture interface and the upper part of the cortical bone, compared to the fixture having standard platform. In conclusion, the stress distribution of the supporting tissue was affected by length, diameter, and platform shape of a fixture, and the fixture which was larger in diameter and length could reduce the stress in the supporting tissues at the bone-fixture interface and bone crest area.

Finite Element Analysis of Supporting Bone according to Custom Abutment Angles (맞춤형 지대주 각도에 따른 지지골의 유한요소 분석)

  • Nam, Min-Gyeong;Kim, Nam-Sic
    • Journal of Technologic Dentistry
    • /
    • v.37 no.3
    • /
    • pp.115-120
    • /
    • 2015
  • Purpose: The purpose of this study is a finite element analysis of supporting bone according to custom abutment angle. Methods: Implant fixture was selected with a diameter of 4 mm and the length of 13 mm. The fixture and abutment was designed by a combination of the abutment screw clamping force to produce a custom abutment model of $0^{\circ}$, $15^{\circ}$, $25^{\circ}$ and $35^{\circ}$. The loading condition of 176 N was applied to the lingual surface of the crown, near to the incisor edge, and horizontal load. An oblique load of $90^{\circ}$ was applied long axis of the implant fixture analyze the stress of supporting bone. Results: The result of mechanical analysis was observed that the supporting bone stress analysis of the horizontal load, the von Mises stress values (MPa) are given in the order of TH00 (432.6) > TH25 (418.0) > TH15 (417.4) > TH35 (415.8), the oblique load, the von Mises stress values are given in the order of TO00 (459.3) > TO15 (399.6) > TO25 (374.8) > TO35 (343.4) Conclusion: The $35^{\circ}$ abutment over the current clinical tolerance limits will be available for clinical application.

Evaluation of fitness in implant screw as tightening torque in dental laboratory (기공실에서의 임플란트 토크값에 따른 적합도 평가)

  • Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.310-315
    • /
    • 2015
  • Purpose: The purpose of this study was to measure the tightening torque for dental implant in dental laboratory and to analyze of the effects of different tightening torque. Materials and Methods: The tightening torque for dental implant in dental laboratory were measured by digital torque gauge. The length of abutment and analog were measured as tightening torque of manufacturer's instructions and the measured value. And the data were statically analyzed. Results: The mean tightening torque of implant screw in dental laboratory was $1.563{\pm}0.332Ncm$. The external type implant system of total length were showing no significant differences but the internal type implant system had difference significant (P < 0.05) when compared with tightening torque. Conclusion: The implant prosthesis should be made under manufacturer's instructions especially as tightening torque of screw. For the fidelity of implant prosthesis, dental technician should learn how to use the torque gauge.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO PLATFORM WIDTH OF FIXTURE (임플란트 고정체의 platform의 크기에 따른 유한요소법적 응력분석)

  • Chung Kyung-Min;Chung Chae-Heon;Jeong Seung-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.674-688
    • /
    • 2003
  • Statement of Problem : With increasing demand of the implant-supported prosthesis, it is advantageous to use the different platform width of the fixture according to bone quantity and quality of the patients. Purpose : The purpose of this study was to assess the loading distributing characteristics of two implant designs according to each platform width of fixture, under vertical and inclined loading using finite element analysis. Material and method : The two kinds of finite element models were designed according to each platform width of future (4.1mm restorative component x 11.5mm length, 5.0mm wide-diameter restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction, 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction and 200N at the buccal cusp in a 300 transverse direction individually Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. Results : The stresses were concentrated mainly at the cortex in both vertical and oblique load ing but the stresses in the cancellous bone were low in both vertical and oblique loading. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading. Increasing the platform width of the implant fixture decreased the stress in the supporting bone, future and abutment screw. Increased the platform width of fixture decreased the stress in the crown and platform. Conclusion : Conclusively, this investigation provides evidence that the platform width of the implant fixture directly affects periimplant stress. By increasing the platform width of the implant fixture, it showed tendency to decreased the supporting bone, future and screw. But, further clinical studies are necessary to determine the ideal protocol for the successful placement of wide platform implants.

A 3-dimensional Finite Element Analysis of Stress Distribution in the Supporting Bone by Diameters of Dental Implant Fixture (골유착성 치과 임플랜트 고정체 직경에 따른 지지골의 응력분포에 관한 삼차원 유한요소 분석적 연구)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 2004
  • The objective of this finite element method study was to analyze the stress distribution induced on a supporting bone by 3.75mm, 4.0mm, 5.0mm diameter of dental implant fixture(13mm length). 3-dimensional finite element models of simplified gold alloy crown(7mm height) and dental implant structures(gold cylinder screw, gold cylinder, abutment screw, abutment, fixture and supporting bone(cortical bone, cancellous bone) designs were subjected to a simulated biting force of 100 N which was forced over occlusal plane of gold alloy crown vertically. Maximum von Mises stresses(MPa) under vertical loading were 9.693(3.75mm diameter of fixture), 8.885(4.0mm diameter of fixture), 6.301(5.0mm diameter of fixture) and the highest von Mises stresses of all models were concentrated in the surrounding crestal cortical bone. The wide diameter implant was the good choice for minimizing cortical bone-fixture interface stress.

  • PDF