• Title/Summary/Keyword: Abstract Wiener measure

Search Result 8, Processing Time 0.021 seconds

THE HEISENBERG INEQUALITY ON ABSTRACT WIENER SPACES

  • Lee, Yuh-Jia
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.283-296
    • /
    • 2001
  • The Heisenberg inequality associated with the uncertainty principle is extended to an infinite dimensional abstract Wiener space (H, B) with an abstract Wiener measure p$_1$. For $\phi$ $\in$ L$^2$(p$_1$) and T$\in$L(B, H), it is shown that (※Equations, See Full-text), where F(sub)$\phi$ is the Fourier-Wiener transform of $\phi$. The conditions when the equality holds also discussed.

  • PDF

A CHANGE OF SCALE FORMULA FOR WIENER INTEGRALS ON THE PRODUCT ABSTRACT WIENER SPACES

  • Kim, Young-Sik;Ahn, Jae-Moon;Chang, Kun-Soo;Il Yoo
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.269-282
    • /
    • 1996
  • It has long been known that Wiener measure and Wiener measurbility behave badly under the change of scale transformation [3] and under translation [2]. However, Cameron and Storvick [4] obtained the fact that the analytic Feynman integral was expressed as a limit of Wiener integrals for a rather larger class of functionals on a classical Wienrer space.

  • PDF

A VERSION OF A CONVERSE MEASURABILITY FOR WIENER SPACE IN THE ABSTRACT WIENER SPACE

  • Kim, Bong-Jin
    • The Pure and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 2000
  • Johnson and Skoug [Pacific J. Math. 83(1979), 157-176] introduced the concept of scale-invariant measurability in Wiener space. And the applied their results in the theory of the Feynman integral. A converse measurability theorem for Wiener space due to the $K{\ddot{o}}ehler$ and Yeh-Wiener space due to Skoug[Proc. Amer. Math. Soc 57(1976), 304-310] is one of the key concept to their discussion. In this paper, we will extend the results on converse measurability in Wiener space which Chang and Ryu[Proc. Amer. Math, Soc. 104(1998), 835-839] obtained to abstract Wiener space.

  • PDF

CHANGE OF SCALE FORMULAS FOR WIENER INTEGRAL OVER PATHS IN ABSTRACT WIENER SPACE

  • Kim, Byoung-Soo;Kim, Tae-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.75-88
    • /
    • 2006
  • Wiener measure and Wiener measurability behave badly under the change of scale transformation. We express the analytic Feynman integral over $C_0(B)$ as a limit of Wiener integrals over $C_0(B)$ and establish change of scale formulas for Wiener integrals over $C_0(B)$ for some functionals.

TRANSLATION THEOREM FOR THE ANALYTIC FEYNMAN INTEGRAL ASSOCIATED WITH BOUNDED LINEAR OPERATORS ON ABSTRACT WIENER SPACES AND AN APPLICATION

  • Jae Gil Choi
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.1035-1050
    • /
    • 2024
  • The Cameron-Martin translation theorem describes how Wiener measure changes under translation by elements of the Cameron-Martin space in an abstract Wiener space (AWS). Translation theorems for the analytic Feynman integrals also have been established in the literature. In this article, we derive a more general translation theorem for the analytic Feynman integral associated with bounded linear operators (B.L.OP.) on AWSs. To do this, we use a certain behavior which exists between the analytic Fourier-Feynman transform (FFT) and the convolution product (CP) of functionals on AWS. As an interesting application, we apply this translation theorem to evaluate the analytic Feynman integral of the functional $$F(x)={\exp}\left(-iq\int_{0}^{T}x(t)y(t)dt\right),\,y{\in}C_0[0,\,T],\;q{\in}{\mathbb{R}}\,{\backslash}\,\{0\}$$ defined on the classical Wiener space C0[0, T].

THE GENERALIZED FERNIQUE'S THEOREM FOR ANALOGUE OF WIENER MEASURE SPACE

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.743-748
    • /
    • 2009
  • In 1970, Fernique proved that there is a positive real number $\alpha$ such that $\int_{\mathbb{B}}\exp\{\alpha{\parallel}x{\parallel}^{2}\}dP(x)$ is finite where ($\mathbb{B},\;P$) is an abstract Wiener measure space and ${\parallel}\;{\cdot}\;{\parallel}$ is a measurable norm on ($\mathbb{B},\;P$) in [2, 3]. In this article, we investigate the existence of the integral $\int_{c}\exp\{\alpha(sup_t{\mid}x(t){\mid})^p\}dm_{\varphi}(x)$ where ($\mathcal{C}$, $m_{\varphi}$) is the analogue of Wiener measure space and p and $\alpha$ are both positive real numbers.

  • PDF

ANALOGUE OF WIENER INTEGRAL IN THE SPACE OF SEQUENCES OF REAL NUMBERS

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • Let T > 0 be given. Let $(C[0,T],m_{\varphi})$ be the analogue of Wiener measure space, associated with the Borel proba-bility measure ${\varphi}$ on ${\mathbb{R}}$, let $(L_{2}[0,T],\tilde{\omega})$ be the centered Gaussian measure space with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and ${\el}_2,\;\tilde{m}$ be the abstract Wiener measure space. Let U be the space of all sequence $<c_{n}>$ in ${\el}_{2}$ such that the limit $lim_{{m}{\rightarrow}\infty}\;\frac{1}{m+1}\;\sum{^{m}}{_{n=0}}\;\sum_{k=0}^{n}\;c_{k}\;cos\;\frac{k{\pi}t}{T}$ converges uniformly on [0,T] and give a set function m such that for any Borel subset G of $\el_2$, $m(\mathcal{U}\cap\;P_{0}^{-1}\;o\;P_{0}(G))\;=\tilde{m}(P_{0}^{-1}\;o\;P_{0}(G))$. The goal of this note is to study the relationship among the measures $m_{\varphi},\;\tilde{\omega},\;\tilde{m}$ and $m$.

EVALUATION OF SOME CONDITIONAL ABSTRACT WIENER INTEGRALS

  • Chung, Dong-Myung;Kang, Soon-Ja
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.151-158
    • /
    • 1989
  • Let (H, B, .nu.) be an abstract Wiener space where H is a separable Hilbert space with the inner product <.,.> and the norm vertical bar . vertical bar=.root.<.,.>, which is densely and continuously imbedded into a separable Banach space B with the norm ∥.∥ , and .nu. is a probability measure on the Borel .sigma.-algebra B(B) of B which satisfies (Fig.) where $B^{*}$ is the topological dual of B and (.,.) is the natural dual pairing between B and $B^{*}$. We will regard $B^{*}$.contnd.H.contnd.B in the natural way. Thus we have =(y, x) for all y in $B^{*}$ and x in H. Let $R^{n}$ and C denote the n-dimensional Euclidean space and the complex numbers respectively.ctively.

  • PDF