• Title/Summary/Keyword: Absorption power

Search Result 852, Processing Time 0.03 seconds

An Experimental Study on the Optimization of Performance Parameter for Membrane Based Dehumidification and Air Conditioning System (분리막 제습공조 시스템의 성능변수 최적화를 위한 실험적 연구)

  • Jang, Jeachul;Kang, Eun-Chul;Jeong, Siyoung;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • There are three types of dehumidification systems : refrigeration dehumidification method, desiccant dehumidification method and hybrid dehumidification method. The first method involves removing moisture by condensation below the dew point, the second method involves absorption by a desiccant material and the last is an integration method. However, the refrigeration dehumidification system consumes too much power and controlling the humidity ratio is difficult. The desiccant dehumidification system uses less power but it has problems of environmental pollution. The hybrid dehumidification system has the disadvantage of a high initial cost. On the other hand, the energy consumption of the membrane based dehumidification system is lower than for the refrigeration dehumidification system. Also, it is an environmentally friendly technology. In this study, the performance parameters are evaluated for the dehumidification system using a hollow fiber membrane. Available area, duct side dry-bulb temperature, sweep gas flux (flow rate) and LMPD (Log Mean Pressure Difference) were used as the performance parameters.

Recent Technology Trends and Future Prospects for Image Sensor (이미지 센서의 최근 기술 동향과 향후 전망)

  • Park, Sangsik;Shin, Bhumjae;Uh, Hyungsoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • The technology and market size of image sensors continue to develop thanks to the release of image sensors that exceed 100 million pixels in 2019 and expansion of black box camera markets for vehicles in addition to existing mobile applications. We review the technology flow of image sensors that have been constantly evolving for 40 years since Hitachi launched a 200,000-pixel image sensor in 1979. Although CCD has made inroads into image sensor market for a while based on good picture quality, CMOS image sensor (CIS) with active pixels has made inroads into the market as semiconductor technology continues to develop, since the electrons generated by the incident light are converted to the electric signals in the pixel, and the power consumption is low. CIS image sensors with superior characteristics such as high resolution, high sensitivity, low power consumption, low noise and vivid color continue to be released as the new technologies are incorporated. At present, new types of structures such as Backside Illumination and Isolation Cell have been adopted, with better sensitivity and high S/N ratio. In the future, new photoconductive materials are expected to be adopted as a light absorption part in place of the pn junction.

STUDY OF MILLI-JANSKY SEYFERT GALAXIES WITH STRONG FORBIDDEN HIGH-IONIZATION LINES USING THE VERY LARGE ARRAY SURVEY IMAGES

  • LAL, DHARAM V.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.6
    • /
    • pp.399-412
    • /
    • 2015
  • We study the radio properties at 1.4 GHz of Seyfert galaxies with strong forbidden highionization lines (FHILs), selected from the Sloan Digital Sky Survey - a large-sized sample containing nearly equal proportion of diverse range of Seyfert galaxies showing similar redshift distributions compiled by using the Very Large Array survey images. The radio detection rate is low, 49%, which is lower than the detection rate of several other known Seyfert galaxy samples. These galaxies show low star formation rates and the radio emission is dominated by the active nucleus with ≤10% contribution from thermal emission, and possibly, none show evidence for relativistic beaming. The radio detection rate, distributions of radio power, and correlations between radio power and line luminosities or X-ray luminosity for narrow-line Seyfert 1 (NLS1), Seyfert 1 and Seyfert 2 galaxies are consistent with the predictions of the unified scheme hypothesis. Using correlation between radio and [O III] λ 5007 Å luminosities, we show that ∼8% sample sources are radio-intermediate and the remaining are radio-quiet. There is possibly an ionization stratification associated with clouds on scales of 0.1-1.0 kpc, which have large optical depths at 1.4GHz, and it seems these clouds are responsible for free-free absorption of radio emission from the core; hence, leading to low radio detection rate for these FHIL-emitting Seyfert galaxies

Packet-Level Scheduling for Implant Communications Using Forward Error Correction in an Erasure Correction Mode for Reliable U-Healthcare Service

  • Lee, Ki-Dong;Kim, Sang-G.;Yi, Byung-K.
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • In u-healthcare services based on wireless body sensor networks, reliable connection is very important as many types of information, including vital signals, are transmitted through the networks. The transmit power requirements are very stringent in the case of in-body networks for implant communication. Furthermore, the wireless link in an in-body environment has a high degree of path loss (e.g., the path loss exponent is around 6.2 for deep tissue). Because of such inherently bad settings of the communication nodes, a multi-hop network topology is preferred in order to meet the transmit power requirements and to increase the battery lifetime of sensor nodes. This will ensure that the live body of a patient receiving the healthcare service has a reduced level of specific absorption ratio (SAR) when exposed to long-lasting radiation. We propose an efficientmethod for delivering delay-intolerant data packets over multiple hops. We consider forward error correction (FEC) in an erasure correction mode and develop a mathematical formulation for packet-level scheduling of delay-intolerant FEC packets over multiple hops. The proposed method can be used as a simple guideline for applications to setting up a topology for a medical body sensor network of each individual patient, which is connected to a remote server for u-healthcare service applications.

Correlation Between Crystal Structure and Properties in Polymer Solar Cells (고분자 태양전지의 결정구조와 특성의 상관성)

  • Kim, Jung Yong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The bulk-heterojunction polymer solar cell based on regioregular P3HT (poly(3-hexylthiophene)) and PCBM (methanofullerene [6,6]-phenyl $C_{61}$-butyric acid methyl ester) was fabricated. Annealing effects on the crystal structure of polymer-fullerene blends as well as the UV-VIS electronic absorption spectroscopy were investigated. The correlation between the crystal organization of bulk-heterojunction film and the power conversion efficiency of solar cell was studied. Resultantly, the polymer solar cell annealed on $150^{\circ}C$ for 30 min, showed both the enhanced molecular interactions and the optimized crystal structure and displayed the power conversion efficiency of 3.2 %.

New reliquefaction system of Boil-Off-Gas by LNG cold energy (LNG냉열이용 BOG 재액화긍정 해석연구)

  • 윤상국;최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.256-263
    • /
    • 2002
  • The Boil-Off-Gases(BOG) in the LNG production terminal are continuously generated during the unloading, storage and supply processes by the heat penetration. In order to use these gases as useful fuel, the reliquefaction process should be installed to put the reliquefied BOG in the main LNG supply line before the secondary pump in terminal. The current reliquefaction method of BOG in LNG terminal is the direct contact one between LNG and BOG in the absorption column. But the system has severe disadvantage, which is the 10 times of LNG circulation needed for unit mass of BOG reliquefaction. It causes, therefore, high power consumption of LNG circulation pump and excessive city-gas supply, even if short demand of NG is needed in the summer time. In this paper, the new reliquefaction system of BOG by using LNG cold energy with indirect contact in precooler was suggested and analysed. The result showed new indirect contact method of BOG reliquefaction system between LNG cold energy and BOG is much more effective than the current direct contact one because of only about 1.3 times of LNG circulation needed and higher energy saving by pump power reduction.

Development of an Advanced Oil Deflector Used in Thermoelectric Power Plant (화력발전소에 사용되는 개선된 오일 디플렉터 개발)

  • Choi, Yong Hoon;Kwak, Hyo Seo;Lee, Chang Ryeol;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.661-668
    • /
    • 2016
  • Oil deflector prevents oil leakage that occurs in thermoelectric power plant at operating lubricant facilities. Vibration of rotating rotor-induced wear of aluminum tooth in existing oil deflector leads to oil leakage as well as life shortening of the tooth. In this study, an advanced oil deflector was developed for shock absorption and prevention of wear by decreasing clearance (from 0.5 mm to 0.2 mm) between rotor and tooth to minimize oil leakage, and by replacing 2 aluminum teeth in outmost of the oil deflector with hi-performance seal made of engineering plastic. The CFD results were compared between advanced vs. existing oil deflector to determine the amount of oil loss. Structural safety was verified through impact analyses according to the three kinds of engineering plastics, considering cost efficiency, and optimal material of hi-performance seal was chosen.

Development of the RTP System for Metal Alloy using One Lamp (한 개의 Lamp를 이용한 Metal Alloy용 RTP 장비 개발)

  • Choi, Jin-Ho;Lee, Dong-Youb
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.254-257
    • /
    • 1996
  • A Rapid Thermal Processing (RTP) system operated below $500^{\circ}C$ has been designed and constructed. It uses an optical pyrometer for measuring wafer temperature, the sensing range of pyrometer is from $2.0{\mu}m$ to $2.4{\mu}m$. To remove the interference effect by IR emitted from lamps an IR filter is adapted which uses water. The best condition for Al alloy using the RTP system is $425^{\circ}C$ for ten seconds. The RTP system uses many lamps for supplying enough power in processing wafer because the absorption wavelength range of IF filter is from $1.3{\mu}m$ to $4.0{\mu}m$. However, reproducibility and uniformity is reduced due to the difference of lamp characteristics. Therefore, for improving the reproducibility and uniformity new RTP system using one lamp is designed. The new RTP system uses a focusing mirror and it focuses the light of lamp. The curverture of the focusing mirror is controlled to supply uniform power in processing wafer. The result of computer simulation shows the possibility of new RTP system using one lamp.

  • PDF

Effects of Microwave Induction on the Liftoff and NOx Emission in Methane Micro Jet Flames (메탄 마이크로 제트화염의 부상과 NOx 배출에 대한 마이크로파 효과)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.22-28
    • /
    • 2016
  • High efficient and environment friendly combustion technologies are used to be operated an extreme condition, which results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy is one of methods to enhance the combustion stability and a microwave as electromagnetic wave is receiving increased attention recently because of its high performance and low-cost system. In this study, an experiment was performed with jet diffusion flames induced by microwave. Micro jet was introduced to simulate the high velocity of industrial combustor. The results show that micro jet flames had three different modes with increasing oxidizer velocity; attached yellow flame, lifted flame, and lifted partially premixed flame. As a microwave was induced to flames, the overall flame stability and blowout limit were extended with the higher microwave power. Especially the interaction between a flame and a microwave was shown clearly in the partially premixed flame, in which the lift-off height decreased and NOx emission measured in post flame region increased with increasing microwave power. It might be attributed to increase of reactivity due to the abundance of radical pool and the enhanced absorption to thermal energy.

A Study on the Sensitivity of Self-Powered Neutron Detectors(SPNDs) and a new Proposal

  • Lee, Wanno;Gyuseong Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.445-450
    • /
    • 1997
  • Self-Powered Neutron Detectors(SPNDs) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. In this paper, Monte Carlo simulation is accomplished to calculate the escape probability of beta particle as a function of their birth position fur the typical geometry of rhodium-based SPNDs. Also, a simple numerical method calculates the initial generation rate of beta particles and the change of generation rate due to rhodium burn-up. Using the simulation and the numerical method, the burn-up profile of rhodium density and the neutron sensitivity are calculated as a function of burn-up time in the reactor. The sensitivity of the SPNDs decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. In addition, for improvement of some properties of rhodium-based SPNDs which are currently used, this paper presents a new material. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long term usage.

  • PDF