• Title/Summary/Keyword: Absorption energy

Search Result 2,743, Processing Time 0.026 seconds

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Conveter (진동수주형 파력발전장치 공기챔버의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.621-625
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted owe chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. In numerical scheme, the potential problem inside the chamber is solved by use of the Green integral equation associated with the Rankine Green function, while outer problem with the Kelvin Green function taking account of fluctuating air pressure in the chamber. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF

Control of the Absorption Air Conditioning System by Using Steepest Descent Method (최속 강하법을 이용한 흡수식 냉동공조시스템 제어)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.495-501
    • /
    • 2003
  • Control algorithms for the absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. The simulation results showed energy savings and the effective controls of an absorption air conditioning system.

Characteristics of Specific Absorption Rate (SAR) in Electromagnetic (EM) Dosimetry

  • Hwang, Sun-Tae;Choi, Kil-Oung
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The SI unit of specific absorption rate (SAR) in W/kg in the electromagnetic (EM) field as non-ionizing radiation is exactly same as the SI unit of absorbed dose rate in Gy/s in the ionizing radiation field. The SI unit of both physical quantities can be expressed in $[m^{\cdot}s^{-3}]$. Where, the unit of absorbed dose, Gy stands for Gray. In EM biological interactions, the SAR equations are derived and the characteristics of EM field energy absorption in terms of the SAR are discussed and described on the mathematical basis.

  • PDF

A study on The Application of a Vertical Absorption System Cooled by Air (공냉형 수직 흡수식 시스템의 적용에 관한 연구)

  • 김정국;조금남
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.351-357
    • /
    • 2003
  • In absorption system, the performance of the absorber is critical the overall system performance, size, and first-cost. The objective of this paper is to provide a comprehensive review of the significant effects that researchers have made to numerically analysis model the coupled heat and mass transfer process that occur during falling-film absorption and experimental researches. This study includes experimental work in the enhancement of absorption performance, the effect of the geometry of a vertical absorber, and the effect of configuration of absorption system. This paper is used to highlight key areas which need attention such as film ans vapor hydrodynamics, especially the non-periodicity, instability, and recirculatory motion of waves in the vertical absorber case.

  • PDF

Hydrogen Absorption Characteristics of Al/Pd Film (Al/Pd 박막의 수소 흡수 특성)

  • Cho, Young-Sin
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.234-240
    • /
    • 2006
  • Al film(135.5 nm thick) with Pd film(39.6 nm thick) on the top of it was made by thermal evaporation method. Hydrogen absorption of Al/Pd film was measured by quartz crystal microbalance(QCM) method at room temperature. The sample was activated by hydrogen absorption and desorption cycling at room temperature. Hydrogen was introduced into the film by increasing hydrogen gas pressure step by step up to 640 torr at room temperature. Hydrogen concentration reached up to 25% at $5{\sim}10$ torr. But at high pressure the concentration decreased. This strange tendency was not understood yet. Further study is needed to find out the mechanism of hydrogen absorption in Al in Al/Pd film.

The Optimal Control of an Absorption Air Conditioning System by Using the Steepest Descent Method

  • Han Doyoung;Kim Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.123-130
    • /
    • 2004
  • Control algorithms for an absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. Simulation results showed energy savings and the effective controls of an absorption air conditioning system.

Electrochemical Study on Rhodamine 6G-Indole Based Dye for HOMO and LUMO Energy Levels

  • Kim, Hyungjoo;Lee, Do-Hyun;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • The energy levels are very important to investigate properties of organic dye materials. These values of energy levels can be calculated and compared with absorption spectra, cyclic voltammetric measurement and computer simulative calculation. In this study, absorption and emission changes were observed by complexation between rhodamine 6G based dye and mercury. This is related to spirolactam ring system of rhodamine 6G based dye. According to structural change of this dye, HOMO and LUMO energy levels were investigated and determined by their values with different approaches.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr-LiSCN Solution with Solar Evaporator Heating (증발기 열원으로 태양열을 이용하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.27-35
    • /
    • 2005
  • In this paper, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system with water-LiBr-LiSCN mixture which utilizes solar energy as evaporator heat source. In addition, a comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.