• Title/Summary/Keyword: Absorption characteristics

Search Result 2,704, Processing Time 0.031 seconds

A Study on Heat Transfer Characteristics for Removal of Absorption Heat in Absorption Process of Ammonia-Water Bubble Mole (암모니아-물 기포분사형 흡수과정에서의 흡수열 제거를 위한 열전달 특성 연구)

  • Lee, Jae-Cheol;Lee, Ki-Bong;Chun, Byung-Hee;Lee, Chan-Ho;Ha, Jong-Joo;Kim, Sung-Hyun
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.273-280
    • /
    • 2001
  • An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the overall system performance. In this study, experimental analyses on heat transfer characteristics for removal of absorption heat in ammonia-water bubble mode absorber were performed. Heat transfer coefficients were estimated as the variations of input gas flow rate, solution flow rate, temperature, concentration, absorber diameter and height, and input flow direction. The increase of gas and solution flow rate affects positively in heat transfer. However, the increase of solution temperature and concentration affects negatively. Moreover, under the same Reynolds Numbers, countercurrent flow is superior to cocurrent flow in heat transfer performance. In addition, from these experimental data, empirical correlations which can explain easily the characteristics of heat transfer are derived.

  • PDF

A Study on the Mechanical Properties and Moisture Control Performance of Diatomite filled Olefin Foams (규조토를 함유한 올레핀계 폼의 기계적 물성 및 수분 제어 성능에 관한 연구)

  • Kim, Jae Yang;Lee, Ji Eun;Seong, Dong Gi
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Products using diatomaceous earth, which are used in various fields, are optimized for moisture absorption, but have problems such as high hardness, powder flying, and rough surface feel. To improve this, an olefin-based foam having low hardness and high elasticity was prepared by adding an excessive amount of inorganic material using EVA (Ethylene vinyl acetate) having low hardness and excellent elasticity. Diatomaceous earth was added to impart moisture absorption characteristics of the foam, and the moisture absorption/drying characteristics showed a moisture absorption rate of about 10 to 15% and a moisture drying rate of 10 to 70% depending on the content of the diatomaceous earth. Through this study, it was possible to manufacture a water-absorbing olefin-based foam with diatomaceous earth added, and it was confirmed that the diatomaceous earth added to the foam had a great influence on water absorption and dissipation due to its microstructure and characteristics.

Dynamics of All-Optical Switching in Bacteriorhodopsin and its Application to Optical Computing

  • Singh, C.P.;Roy, Sukhdev
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.317-319
    • /
    • 2002
  • All-optical switching has been demonstrated in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial 8 state absorption. The switching characteristics have been analyzed using the rate equation approach considering all the six intermediate states (B, K, L, M, N and 0) in the bR photocycle. The switching characteristics are shown to be sensitive to life time of the M state, absorption cross-section of the 8 state at probe wavelength ($\sigma$ $\_$Bp/) and peak pump intensity. It has been shown that the probe laser beam can be completely switched off (100 % modulation) by the pump laser beam at relatively low pump powers, for $\sigma$$\_$Bp/ = O. The switching characteristics have been used to design all-optical NOT, OR, AND and the universal NOR and NAND logic gates for optical computing with two pulsed pump laser beams.

  • PDF

Energy Absorption Characteristics of Composite Laminated Structural Member According to the Interface Number (복합적층 구조부재의 계면수 변화에 따른 에너지흡수특성)

  • Hwang, Woo-Chae;Lee, Kil-Sung;Cha, Cheon-Seok;Jung, Jong-An;Han, Gil-Young;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Ultimate goals in vehicle design can be summarized as environment-friendliness and safety. Along with these requirements, the importance of natural environment conservation has been focused lately. Therefore, reduced emission from vehicle and improved efficiency has become the top priority projects throughout the world. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. This study is to investigate the energy absorption characteristics of CFRP hat-shaped section members under the axial impact collapse test. The CFRP hat-shaped section members which manufactured from unidirectional prepreg sheets were made of 8plies. The axial impact collapse tests were carried out for each section members. The collapse mode and energy absorption characteristics were analyzed for CFRP hat-shaped section member according to the interface numbers(2, 3, 4, 6 and 7).

Study on the Performance Characteristics of Micro Gas Turbine (MGT) Co-generation System (마이크로 가스터빈 열병합장치 성능특성 연구)

  • Hur, Kwang-Beom;Kim, Jae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.964-970
    • /
    • 2006
  • Micro gas turbine(MGT) has received attention recently as small-scale distributed power sources. With characteristics such as their small size, lightweight, low maintenance cost and minimal vibrations during operation, they are expected to become widespread in a wide range of ' applications, including residential and small-scale industrial use. It is very easier to start-up and stop the MGT system which is the friendly environmental power system has just below the 9ppm NOx emmission and good quality of noise level. The exhaust heat emitted by the MGT is in the form of about $300^{\circ}C$ clean exhaust gas. The exhaust gas is suitable for absorption chiller/heater system. 1 has researched performance characteristics of the 60 kW class MGT-absorption chiller-heater system in the local condition. Variations of heat recovery from exhaust gas has measured according to micro gas turbine output of 15, 30, 45, 60kW. From those results, the performance of the MGT-absorption chiller/heater system has been evaluated.

Effects of Magnetic Powder Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets (FeSiCr 박편/폴리머 복합시트의 전자파 흡수 특성에 미치는 자성분말 두께의 영향)

  • Kim, Ju-Beom;Noh, Tae-Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.866-872
    • /
    • 2009
  • The effects of magnetic powder thickness on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The atomized FeSiCr powders were milled by using attritor for 12, 24, and 36 h, powder thickness changed from $40{\mu}m$ to $3{\mu}m$ upon 36 h milling. The composite sheet, including thinned magnetic flakes, exhibited higher power loss in the GHz frequency range as compared with the sheets having thick flakes. Moreover, both the complex permeability and the loss factor increased with the decrease in thickness of the alloy flakes. Therefore, the enhanced power loss property of the sheets containing thin alloy flakes was attributed to the flakes of high complex permeability, especially their imaginary part. Additionally, the complex permittivity was also increased with the reduction of flake thickness, and this behavior was considered to be helpful for improvement of the electromagnetic wave absorption characteristics in the composite sheets, including thin alloy flakes.

Absorption Characteristics of Carbon Dioxide in Aqueous AMP Solution Adding HMDA (HMDA 첨가에 따른 AMP 수용액의 이산화탄소 흡수특성)

  • Choi Won-Joon;Cho Ki-Chul;Oh Kwang-Joong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.605-612
    • /
    • 2005
  • In this study, the possible use of HMDA (Hexamethylenediamine) as additive to enhance reaction between $CO_{2}$ and AMP (2-amino-2-methyl-1-propanol) which has higher absorption capacity than that of MEA (Monoethanolamine) was investigated. Also, the absorption capacity for $CO_{2}$ was compared with addition of HMDA, piperazine or MDEA (N-methyldiethanolamine) into $30\;wt\%$ AMP at $40^{circ}C$ and $CO_{2}$ partial pressure ranging from 0.5 to 120 kPa. Apparent rate constant ($K_{app}$) and absorption capacity with the addition of $5\∼20\;wt\%$ HMDA into AMP increased $214.2\∼276.3\%$ and $29.9\∼91.7\%$ than those of AMP alone. As a result, when $5\;wt\%$ HMDA added into AMP, the increasing rate of the absorption rate and the absorption capacity was found to be the highest. In addition, the absorption capacity increased $6.8\%,\;9.8\%,\;11.6\%$ with addition of MDEA, piperazine or HMDA respectively as compared to AMP alone at $CO_{2}$ partial pressure of 20 kPa. Consequently, HMDA as additive to improve absorption capacity of AMP was superior to other additives.

Sound Absorption and Thermal Insulation Characteristics of Membrane Used for Sound Field Control (음장제어용 막재료의 음향 및 단열특성)

  • Jeong, Jeong-Ho;Kim, Jeong-Uk;Jeong, Jae-Gun;Cho, Byung-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.103-114
    • /
    • 2012
  • Nowadays membrane material is widely used for large indoor spaces and long spaces such as traditional market. Thermal insulation and sound field control performance is considered as a main properties for design of such buildings. In this paper sound absorption and thermal insulation properties of membrane material was investigated. Firstly, normal incidence sound absorption coefficient of 10 kinds of glass wool textiles showed that sound absorption coefficient was increased in proportion of thickness and surface density of textile. Sound absorption coefficient of 4 kinds of sound absorptive inner membrane with outer membrane was tested in the reverberation chamber. Sound absorption coefficient of mid frequency range was about 0.4 ~ 0.6. Also, sound absorption coefficient was changed by the air space behind the membrane material. Secondly, sound field control performance was investigated using mock-up space. By the installation of sound absorption membrane material, reverberation time was decreased and speech intelligibility was increased. Finally, thermal resistance and room temperature in two kinds of mock-up rooms were tested, simultaneously. Results of thermal properties showed thermal insulation properties ware increased by adding inner membrane material underneath the outer membrane.

Axial Crush and Energy Absorption Characteristics of Aluminum/GFRP Hybird Square Tubes (알루미늄/GFRP 혼성 사각튜브의 정적 압축 붕괴 및 에너지 흡수 특성)

  • 김구현;이정주;신금철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.208-219
    • /
    • 2000
  • In this study, static axial crush tests were performed with the new aluminum/GFRP hybrid tube. Glass/Epoxy prepregs were wrapped around an aluminum tube and co-cured. The failure of the hybrid tube was stable and progressive without trigger mechanism, and specific energy absorption was increased to the maximum of 33% in comparison with the aluminum tube. Effective energy absorption is possible for an inner aluminum tube because a wrapped composite tube constrains the deflection of an aluminum tube. The failure of a hybrid composite tube was stable without trigger mechanism because the inner aluminum tube could play the role of the crack initiator and controller. Mean crushing load could be calculated by modifying the plastic hinge collapse model for hybrid materials. The predicted results by this analytical model showed good agreement with the experimental results. It can be said that Aluminum/Glass-Epoxy hybrid tube is suitable for the vehicle front structure because this hybrid tube shows effective energy absorption, easy production, and simple application capability for RTM process.

  • PDF

Effect of Acoustic Reflector's Surface Density on Sound Absorption Characteristics and Stage Acoustics (음향 반사판의 밀도별 흡음특성 및 무대음향에의 영향)

  • Kim, Young-Sun;Jeong, Jeong-Ho;Jeon, Jin-Yong;Kim, Myeong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.429-436
    • /
    • 2012
  • In concert halls and auditoriums, acoustic reflector and stage enclosure is one of the main factors on the room and stage acoustic characteristics. As a stage enclosure and acoustic reflector honey comb based light-weight reflector is widely used, because it is easy to install. However, there was not enough research on the surface density effect on room and stage acoustics. In this study, sound absorption coefficient tests on three kinds of wooden acoustic reflectors with different surface density were conducted. Surface density of acoustic reflector was changed from 11 kg/$m^2$ to 41 kg/$m^2$. For the low frequency excitation, sub-woofer was used with omnidirectional loud-speaker simultaneously. From the experiments, it was found that sound absorption coefficient below 250 Hz band was decrease by the increment of surface density. In order to check the influence of the surface density on room and stage acoustic parameters, room acoustic simulation was conducted with sound absorption coefficients, which were tested in reverberation chamber. By the increment of surface density of acoustic reflector, RT(reverberation time) and EDT(early decay time) were increased. Also, ST(stage support) was improved in low frequency bands.