• Title/Summary/Keyword: Absorption Properties

Search Result 3,682, Processing Time 0.033 seconds

Effects of Polymerization Parameters on Absorption Properties of an Itaconic Acid-based Superabsorbent Hydrogel

  • Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.232-240
    • /
    • 2019
  • A superabsorbent hydrogel (SAH) can absorb and retain water weighing more than a hundred times of their dry weight because of their three-dimensional hydrophilic structure. To fabricate an SAH, itaconic acid (IA) and vinyl sulfonic acid (VSA) were subjected to radical polymerization in an aqueous solution, wherein IA and VSA were neutralized, and then, a crosslinker and a thermal initiator were added in sequence. The structure of poly(IA-co-VSA) was characterized using attenuated total reflectance Fourier-transform infrared spectroscopy. We also studied the changes in the absorption properties of the SAH composites according to the polymerization temperature, degree of neutralization, type and content of the initiator used, and type and content of the crosslinker used. Thus, we could determine the effects of some synthetic factors on the absorption properties of the SAH.

Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution

  • Hee-Kyung Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.371-382
    • /
    • 2022
  • Carbonates are inorganic ligands that are abundant in natural groundwater. They strongly influence radionuclide mobility by forming strong complexes, thereby increasing solubility and reducing soil absorption rates. We characterized the spectroscopic properties of Am(III)-carbonate species using UV-Vis absorption and time-resolved laser-induced fluorescence spectroscopy. The deconvoluted absorption spectra of aqueous Am(CO3)2- and Am(CO3)33- species were identified at red-shifted positions with lower molar absorption coefficients compared to the absorption spectrum of aqua Am3+. The luminescence spectrum of Am(CO3)33- was red-shifted from 688 nm for Am3+ to 695 nm with enhanced intensity and an extended lifetime. Colloidal Am(III)-carbonate compounds exhibited absorption at approximately 506 nm but had non-luminescent properties. Slow formation of colloidal particles was monitored based on the absorption spectral changes over the sample aging time. The experimental results showed that the solubility of Am(III) in carbonate solutions was higher than the predicted values from the thermodynamic constants in OECD-NEA reviews. These results emphasize the importance of kinetic parameters as well as thermodynamic constants to predict radionuclide migration. The identified spectroscopic properties of Am(III)-carbonate species enable monitoring time-dependent species evolution in addition to determining the thermodynamics of Am(III) in carbonate systems.

Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites

  • Li, Yun;Cheng, Haifeng;Wang, Nannan;Zhou, Shen;Xie, Dongjin;Li, Tingting
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850125.1-1850125.12
    • /
    • 2018
  • To reduce the imbalance of impedance matching between the magnetic metal nanowires and free space, $Fe/TiO_2$ core/shell nanowire arrays with different diameters were fabricated in the templates of anodic aluminum oxide membranes by electrodeposition. The influences of the microstructure on the microwave absorption properties of the $Fe/TiO_2/Al_2O_3$ composites were studied by the transmission/reflection waveguide method. It was demonstrated experimentally that both the interfacial polarization and the diameter of the $Fe/TiO_2$ core/shell nanowires have critical effects on the microwave absorption properties. We also investigated the angle dependence of the microwave absorption properties. Due to the interfacial polarization and associated relaxation, the $Fe/TiO_2/Al_2O_3$ composites exhibited optimal microwave absorption properties when microwave propagation direction was accordant with the axis of the nanowires. Finally, we managed to obtain an optimal reflection loss of below -10 dB (90% absorption) over 10.2-14.8 GHz, with a thickness of 3.0 mm and the minimum value of -39.4 dB at 11.7 GHz.

Moisture Absorption and Desorption Properties of Douglas Fir, Hinoki, Larch, Plywood, and WML Board in Response to Humidity Variation

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.488-502
    • /
    • 2020
  • In this study, the moisture absorption and desorption properties presented by the Health-Friendly Housing Construction Standards of South Korea were compared using the wood of three tree species (Douglas-fir, Hinoki, Larch) and two types of wood-based materials(Plywood, WML Board). The national standards for functional building materials present that the amounts of moisture absorption and desorption should be at least 65g/㎡ on average, respectively according to the test method under KS F 2611:2009. Therefore, in this study, the moisture absorption/desorption properties of materials with no treatment (Control), with punching, and with surface stain finishing and the moisture absorption/desorption property improvement effects of the treatments were compared and analyzed. According to the results of this study, it was evaluated that all five types of wood and wood-based materials tested did not satisfy the amount of moisture absorption/desorption of at least 65g/㎡, which is the performance standard for moisture absorption/desorption functional building materials, indicating that untreated wood and wood-based materials cannot be applied as functional finishing materials according to the Health-Friendly Housing Construction Standards. The surface stain finishing greatly reduced the moisture absorption and desorption rates of the materials, and the amounts of moisture absorbed and desorbed were also shown to decrease by at least two times on average. When the surfaces of the materials were punched with Ø4mm holes at intervals of 20 mm, the moisture absorption/desorption areas increased from 18% to 51%, and this increase was shown to be capable of increasing the amounts of moisture absorbed/desorbed by 29% on average at the minimum, and 81% on average at the maximum. The effects of punching were shown to be identical even in cases where the materials were stain finished. For the application of wood or wood-based materials as eco-friendly, health-friendly, and moisture absorption/desorption functional building materials hereafter, it is judged that new physical and chemical improvement studies should be conducted, and treatment methods should be developed.

Electromagnetic Wave Absorption Properties in Fe-based Nanocrystalline P/M Sheets with Carbon Black and BaTiO3 Additives

  • Kim, Mi-Rae;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • In order to increase the magnetic loss for electromagnetic(EM) wave absorption, the soft magnetic $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was used as the basic material in this study. The melt-spun strip was pulverized using an attrition mill, and the pulverized flake-shaped powder was crystallized at $540^{\circ}C$ for 1h to obtain the optimum grain size. The Fe-based powder was mixed with 2 wt% $BaTiO_3$, $0.3{\sim}0.6$ wt% carbon black, and polymer-based binders for the improvement of electromagnetic wave absorption properties. The mixture powders were tape-cast and dried to form the absorption sheets. After drying at $100^{\circ}C$ for 1h, the sheets of 0.5 mm in thickness were made by rolling at $60^{\circ}C$, and cut into toroidal shape to measure the absorption properties of samples. The characteristics including permittivity, permeability and power loss were measured using a Network Analyzer(N5230A). Consequently, the properties of electromagnetic wave absorber were improved with the addition of both $BaTiO_3$ and carbon black powder, which was caused by the increased dielectric loss of the additive powders.

Change of Hydriding Properties of Gravity Cast Mg-Ni Alloys with Ni Content (Ni 첨가량에 따른 중력 주조 Mg-Ni 합금의 수소화 반응 특성의 변화)

  • Yim, C.D.;Moon, Y.M.;You, B.S.;Na, Yeong-Sang;Bae, Jong-Su
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.250-256
    • /
    • 2004
  • Magnesium and its alloys have the high potential as hydrogen storage materials because of their highest hydrogen storage capacity, low density and abundant resources. But poor kinetic properties of hydriding and dehydriding and high working temperature have limited their practical applications. In this study, the Mg-Ni binary alloys with different amount of Ni were produced by gravity casting and characterized in order to investigate the relationship between the microstructures and hydriding properties. The maximum hydrogen absorption capacity decreased, but the absorption kinetics increased with Ni content. The difference in the absorption kinetics was resulted from the differences in the sort and shape of primary solid phases and eutectic microstructure.

Changes in the Water Absorption Properties of Pulp Mold manufactured with Oil Palm EFB by surface treatments (표면처리에 의한 오일팜 EFB 기반 펄프몰드의 흡수특성 변화)

  • Kim, Dong-Sung;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • The applicability of oil palm biomass, EFB(Empty Fruit Bunch) as raw materials for environmental friendly packaging material, pulp mold, was evaluated in this study. The changes in the water absorption properties of pulp mold by the addition of EFB and the surface treatments with PVA and AKD were analyzed by measuring the changes in the water absorption rate and the water contact angle. The each pulp mold sample was prepared by using laboratory wet pulp molder. And the water absorption rate of each samples were evaluated by measuring times for the absorption of a 0.1 ml water drop on the pulp mold sample surface. The addition of EFB to the pulp mold made of OCC resulted in the decrease of water absorption rate and the increase in the water contact angle. The surface treatments with PVA and AKD on the OCC pulp mold showed the significant reduction in the water absorption rate. However, in case of ONP pulp mold, the addition of EFB and the surface treatments with PVA and AKD showed no big changes in water absorption times. Those might be come from the finer surface structure of ONP pulp mold which were made of more finer and flexible fibers and more hydrophilic fibers. The results of this study showed the functional properties such as water absorption rate, could be controlled by the application of EFB and the treatments with AKD or PVA, especially in case of the OCC pulp mold.

The Effect of Geometrical Structure on the Moisture Transport Properties of Nonwoven Batting Materials (부직포 충전재의 구조적 특성이 수분전달 특성에 미치는 영향-단층구조와 이층구조 부직포의 비교-)

  • 김희숙;나미희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.810-818
    • /
    • 2000
  • The purpose of this study was to analyze the effect of geometrical structure on the moisture transport properties of nonwoven batting materials. Two types of nonwovens were used such as single and double layered nonwovens. Steady and dynamic state water vapor transport properties were measured by absorption, evaporation and cobaltous chloride method respectively. The results of this study were as follows: 1) Geometrical structure affected water vapor evaporation, but there were no differences between single and double layered nonwovens in moisture absorption. Thickness and air permeability were influencing factor on water vapor transport rate. 2) Directionality of double layered nonwoven was observed both in steady and dynamic state moisture transport. There were differences between upper and lower layer of double layered nonwoven both in moisture absorption rate and color change by cobaltous chloride method. 3) In dynamic state of water vapor transport rate, single layered nonwoven reached more rapidly at the established relative humidity. It was confirmed that geometrical structure affected water vapor evaporation and hydrophilicity of fiber affected moisture absorption because there were much more water vapor transport rate by evaporation than absorption within the same period of time.

  • PDF

The Effects of Temperature and Water Absorption on Failure Behaviors of Carbon / Aramid Fiber Composites (온도 및 수분이 탄소/아라미드 섬유 복합재의 파손거동에 미치는 영향)

  • Kwon, Woo Deok;Kwon, Oh Heon;Park, Woo Rim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • This paper presents the effects of high temperature and water absorption on the mechanical behaviors of carbon-aramid fiber composites, specifically their strength, elastic modulus, and fracture. These composites are used in industrial structures because of their high specific strength and toughness. Carbon fiber composites are vulnerable to the impact force of external objects despite their excellent properties. Aramid fibers have high elongation and impact absorption capabilities. Accordingly, a hybrid composite with the complementary properties and capabilities of carbon and aramid fibers is fabricated. However, the exposure of aramid fiber to water or heat typically deteriorates its mechanical properties. In view of this, tensile and flexural tests were conducted on a twill woven carbon-aramid fiber hybrid composite to investigate the effects of high temperature and water absorption. Moreover, a multiscale analysis of the stress behavior of the composite's microstructure was implemented. The results show that the elastic modulus of composites subjected to high temperature and water absorption treatments decreased by approximately 22% and 34%, respectively, compared with that of the composite under normal conditions. The crack behavior of the composites was well identified under the specimen conditions.