• Title/Summary/Keyword: Absorption Mass Transfer Rate

Search Result 85, Processing Time 0.026 seconds

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.

Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical inner Tube (1st Report, Characteristics of Absorption) (수직관내(垂直管內)를 흘러내리는 액막식(液膜式) 흡수기(吸收器)의 흡수(吸收) 및 열전달특성(熱傳達特性) (제(第) 1 보(報), 흡수특성(吸收特性)))

  • Ohm, K.C.;Kashiwagi, T.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • Mass transfer coefficients were measured for water vapor absorption into a LiBr-Water solution of 60wt% flowing down an absorber of vertical tube type. The absorber is copper tube of 25mm inner diameter and 1000mm length. The film Reynolds number were varied in the range of 35~130. The solution is fed from the top of the pipe, and the conditions of solution are supercooled liquid and superheated liquid. As results, the flowrates of LiBr solution which takes peak value of average absorption mass flux exist. Mass transfer coefficients decrease with increasing the flowrate of LiBr solution, and the decrease rate in the case of supercooled liquid is large as compared with that in the case of superheated liquid. But the absorption rate of supercooled liquid is decidedly superior to that of superheated liquid.

  • PDF

Analysis of heat and mass transfer in a vertical tube absorber cooled by air (공랭형 수직원관 흡수기에서의 열 및 물질전달 해석)

  • Kim, Seon-Chang;O, Myeong-Do;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3293-3303
    • /
    • 1996
  • Numerical analyses have been performed to estimate the absorption heat and mass transfer coefficients in absorption process of the LiBr aqueous solution and the total heat and mass transfer rates in a vertical tube absorber which is coolING ed by air. Axisymmetric cylindrical coordinate system was adopted to model the circular tube and the transport equations were solved by the finite volume method. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by water vapor in tube. Effects of film Reynolds number on heat and mass transfer coefficients have been also investigated. Especially, effects of tube diameter have been considered to observe the total heat and mass transfer rates through falling film along the tube. Based on the analysis it has been found that the total mass transfer rate increases rapidly in a region with low film Reynolds number(10 ~ 40) as the film Reynolds number increases, while decreases beyond that region. The total heat and mass transfer rates increase with increasing the tube diameter.

Analysis of Heat and Mass Transfer on Helical Absorber (헬리컬 흡수기의 흡수 열물질전달 해석)

  • Gwon, O-Gyeong;Im, Jong-Geuk;Yun, Jeong-In;Kim, Seon-Chang;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1428-1436
    • /
    • 2000
  • The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LIBr-H$_2$O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature. the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux.

Improvement of absorption characteristics by insert devices in a vertical tube (수직관내 삽입기구에 의한 흡수특성의 향상)

  • 김병주;신광섭;문형석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.466-474
    • /
    • 1998
  • In the present study, the improvement of absorption characteristics by installing insert devices, such as spring and wire screen, inside the vertical tube absorber were studied experimentally. Momentum, heat and mass transfer rate in the absolution process of smooth bare tube, smooth tube with spring-insert, and with wire screen-insert were compared and analysed in range of film Reynolds number of 40∼200. The improvement of heat transfer rate by spring-insert and screen-insert were remarkable especially in the low Reynolds number region. As the mesh number increased in screen-insert and as the pitch decreased in spring-insert, Nusselt and Sherwood number increased. Degradation of mass transfer by non-absorbable gas showed similar qualitative trends regardless of the insert type.

  • PDF

Approximate solutions on the absorption process of an aqueous LiBr falling film : effects of vapor flow (리튬브로마이드 수용액 유하액막의 흡수과정에 대한 근사 해법 : 증기 유동의 영향)

  • Kim, B.J.;Lee, C.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.144-152
    • /
    • 1997
  • Film absorption involves simultaneous heat and mass transfer in the vapor-liquid system. In the present work, the absorption process of water vapor by an aqueous soluton of LiBr flowing inside of the vertical tube was investigated. The continuity, momentum, energy and diffusion equations for the solution film and vapor were formulated in integral forms and solved numerically. The model could predict the film thickness, the pressure gradient, and the heat and mass transfer rate. Particularly the effects of vapor flow conditions on the absorption process were investigated in terms of the vapor Reynolds number. As the vapor Reynolds number increased, the shear stress at the vapor-solution interface also increased. Consequently solution film became thinner at higher vapor flowrate under the co-currentflow condition. Thinner film was capable of higher heat transfer to the wall and leaded to higher absorption rate of the water vapor into the solution film.

  • PDF

The Study on Absorption Performance of a Plate-Fin Type Absorber (플레이트-휜형 흡수기의 흡수성능에 대한 연구)

  • 강인석;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.557-563
    • /
    • 2001
  • Small capacity gas absorption systems for cooling and heating have been favorably considered to reduce the seasonal imbalance of electrical loads and LNG consumption recently. A multifunctional plate-fin heat exchanger was adopted as an absorber and the performance was tested and analyzed to reduce the size and weight of the absorption heat pump. The test was performed using breadboard type ammonia absorption machine. The performance was compared with the plate type absorber and there was little difference in heat and mass transfer characteristics. The heat and mass transfer performance was a function of poor solution and vapor flow rates and the mass transfer was dependent on vapor flow rate more than heat transfer.

  • PDF

Effect of a non-absorbable gag on the absorption process in a vortical tube absorber (수직원관형 흡수기의 흡수과정에 미치는 비흡수가스의 영향)

  • 허기준;정은수;정시영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.456-465
    • /
    • 1998
  • Effect of a non-absorbable gas on the absorption process in a vertical tube absorber was investigated numerically. The water vapor mined with air as the non-absorbable gas is absorbed into LiBr/water solution film. The flow is assumed to be laminar and fully developed in both liquid and gas phases. The diffusion and energy equations were solved in both phases to give the temperature and concentrations, from which heat and mass fluxes were determined. It was shown that the local absorption rate decreases as the mass fraction of air in water vapor increases. The vapor pressure of water at the liquid-vapor interface reduces significantly since the non-absorbable gas is accumulated near the interface. The effect of non-absorbable gases on absorption rate becomes larger as the mass flow rate of the vapor decreases. For small amount of non-absorbable gases the total absorption rate of water vapor increases as the mass flow rate of the vapor decreases. Total absorption rate increases as the mass flow rate of the vapor increases for large concentration of non-absorbables at the inlet of an absorber.

  • PDF

Effects of a Non-absorbable Gas on the Absorption Process in a Vertical Tube Absorber

  • Hur, ki-Joon;Jeong, Eun-Soo;Jeong, Si-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.69-78
    • /
    • 1999
  • Effects of a non-absorbable gas on the absorption process in a vertical tube absorber has been investigated numerically. The water vapor mixed with air is absorbed into LiBr/water solution film. The flow is assumed to be laminar and fully developed in both liquid and gas phases. The diffusion and energy equations were solved in both phases to give the temperature and concentrations, from which heat and mass fluxes were determined. The local absorption rate has been shown to decrease as the mass fraction of air in the water vapor increases. The vapor pressure of water at the liquid-vapor is interface reduced significantly since the non-absorbable gas accumulates near the interface. The effects of non-absorbable gases on absorption rate become larger as the mass flow rate of the vapor decreases. For a small amount of non-absorbable gases, the total absorption rate of water vapor increases as the mass flow rate of the vapor decreases. The total absorption rate increases as the mass flow rate of the vapor increases for large concentrations of non-absorbable gases at the inlet of an absorber.

  • PDF

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.