• Title/Summary/Keyword: Absorption Enhancement

Search Result 279, Processing Time 0.026 seconds

Visualization of Marangoni Convection Behavior between Two Surfactant Dropwises in the Process of Steam Absorption (증기흡수시(蒸氣吸收時) 계면활성제액적간(界面活性劑液滴間)에 발생(發生)하는 마랑고니대류거동(對流擧動)의 가시화(可視化))

  • Rie, D.H.;Choi, K.K.;Kashiwagi, T.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-71
    • /
    • 1992
  • In most absorption machines, absorption enhancement has been achieved by adding small amount of surfactant additive, which introduced the surface tension difference between absorbent and surfactant droplets in the vapor absorption. The aim of this study is to understand a basic mechanism of Marangoni convection and its effectiveness in the vapor absorption enhancement. In this study, nonflowing aqueous solution of LiBr 60 mass% was exposed to saturated water vapor under the condition that two dropwises surfactant were fixed on the absorbent surface. Our experiments achieved to visualize the enhanced heat and mass transfer phenomena by the effect of Marangoni convection through the laser holographic interferometry. Also, Marangoni convection behavior was obtained by using tracer method.

  • PDF

Fiber Ring Laser Intra-cavity Absorption Spectroscopy for Gas Sensing: Analysis and Experiment

  • Li, Mo;Liu, Kun;Jing, Wencai;Peng, Gang-Ding
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Fiber ring laser based intra-cavity absorption spectroscopic sensor has great potential for high sensitivity gas detection. Using the rate equations and propagation equations, we investigated theoretically factors that affect the sensitivity of such fiber ring laser sensors and determined the optimal design parameters and conditions for significant enhancement of the system sensitivity. Experiments have been conducted to determine the sensitivity enhancement performance. The results showed a factor of 25 ~ 30 in sensitivity enhancement in the experimental system, agreeing well with the theoretical expectations. Experiments on acetylene detection have also been carried out and the results showed that the ring cavity significantly increases the signal absorption and that high sensitivity can be obtained for gas detection.

Experiment on Heat Transfer and Absorption Performance Enhancement for Binary Nanofluids (NH3/H2O + Nano-Particles) (이성분 나노유체 (NH3/H2O + 나노입자)의 열전달 및 흡수성능 촉진실험)

  • Lee, Jin-Ki;Jung, Chung-Woo;Kang, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.669-675
    • /
    • 2008
  • The objectives of this paper are to examine the effect of nano-particles on the pool type absorption heat transfer enhancement and to find the optimal conditions to design a highly effective compact absorber for ammonia/water absorption system. The effect of $Al_2O_3$ nano-particles and carbon nanotube(CNT) on the absorption performance is studied experimentally. The experimental ranges of the key parameters are 20% of ammonia concentration, $0{\sim}0.08\;vol%$ (volume fraction) of CNT particles, and $0{\sim}0.06 \;vol%$ of $Al_2O_3$ nano-particles. For the ammonia/water nanofluids, the heat transfer rate and absorption rate with 0.02 vol% $Al_2O_3$ nano-particles were found to be 29% and 18% higher than those without nano-particles, respectively. It is recommended that the concentration of 0.02 vol% of $Al_2O_3$ nano-particles be the best candidate for ammonia/water absorption performance enhancement.

Enhancement of Heat and Mass Transfer for a Vertical Type Absorber (수직흡수기의 열 및 물질전달 촉진)

  • 권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.362-370
    • /
    • 1998
  • Absorption systems require a heat source for working but they have a great merit in that relatively low-temperature and low-quality types of thermal energy such as solar heat and exhaust heat can be effectively utilized as heat source. However details research related to absorbers which have a great effect on performances has been rarely done and thus there has been a strong hope for positive developments to improve their efficiencies. This paper describes absorption experiments made with different inside tube diameters and shapes. The purpose of this study is to acquire basic knowledge about heat and mass transfer in a falling film type absorber with vertical inner tubes. Heat and mass transfer were measured for water vapor absorption into a water/LiBr solution flowing down an absorber of vertical inner tubes. As a result absorption acceleration tube compares bare tube and heat transfer improved by order of insert spring tube corrugated tube grooved tube. And the acceleration that is good provided in inserting spring tube for both sides of heat and mass transfer.

  • PDF

Experimental of Absorption Performance Enhancement for Binary Nanofluids($NH_3/H_2O$ + Nano Particles) (이성분 나노유체($NH_3/H_2O$+나노입자)의 흡수성능 촉진실험)

  • Lee, Jin-Ki;Jung, Chung-Woo;Koo, June-Mo;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.124-129
    • /
    • 2008
  • The objectives of this paper are to examine the effect of nano-particles on the pool type absorption heat transfer enhancement and to find the optimal conditions to design a highly effective compact absorber for $NH_3/H_2O$ absorption system. The effect of $Al_2O_3$ and CNT particles on the absorption performance is studied experimentally. The experimental ranges of the key parameters are 20% of $NH_3$ concentration, $0{\sim}0.08%$ (volume fraction) of CNT particles, and $0{\sim}0.06%$ (volume fraction) of $Al_2O_3$ nano-particles. For the $NH_3/H_2O$ nanofluids, the heat transfer rate and absorption rate with 0.02 vol% $Al_2O_3$ nano-particles were found to be 28.9% and 17.8% higher than those without nano-particles, respectively. It is recommended that the concentration of 0.02 vol% of $Al_2O_3$ nano-particles be the best candidate for $NH_3/H_2O$ absorption performance enhancement.

  • PDF

Enhancement of Paracellular Transport of Heparin Disaccharide Across Caco-2 Cell Monolayers

  • Kim, Yeong-Shik;Cho, So-Yean;Kim, Jong-Sik;Li, Hong;Shim, Chang-Koo;Linhardt, Robert-J.
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.86-92
    • /
    • 2002
  • The enhancement of paracellular transport of heparin disaccharide using several absorption enhancers across Caco-2 cell monolayers was tested . The cytotoxicity of these enhancers was also examined. The enhancing effects by Quillaja saponin, diponin glycyrrhizinate, $18{\beta}-glycyrrhetinic$ acid, sodium caprate and taurine were determined by changes in transepithelial electrical resistance (TEER) and the amount of heparin disaccharide transported across Caco-2 cell monolayers. Among the absorption enhancers, $18{\beta}-glycyrrhetinic$ acid arid taurine decreased TEER and increased the permeability of heparin disaccharide in a dose-dependent and time-dependent manner with little or negligible cytotoxicity. Our results indicate that these absorption enhancers can widen the tight junction, which is a dominant paracellular absorption route of hydrophilic compounds . It is highly possible that these absorption enhancers can be applied as pharmaceutical excipients to improve the transport of macromolecules and hydrophilic drugs having difficulty in permeability across the intestinal epithelium.

Photonic Crystal Effect of Nano-Patterned PEDOT:PSS Layer and Its Application to Absorption Enhancement of ZnPc Thin Films

  • Han, Ji-Young;Ryu, Il-Whan;Park, Da-Som;Kwon, Hye-Min;Yim, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.252-252
    • /
    • 2012
  • It is widely accepted that short exciton diffusion lengths of organic semiconductors with respect to the film thickness limit the charge (hole and electron) separation before excitons recombination in organic photovoltaic (OPV) cells. Therefore the efficient absorption of incident light within the thin active organic layer is of great importance to improve the power conversion efficiency (PCE) of the cells. In this work, we fabricated 2-dimensionally (2D) nano-patterned poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOST:PSS) layers using capillary phenomenon and nano-imprinting technology at the scale of several hundred nanometers. This 2D nano-patterned PEDOT:PSS layer exerted photonic crystal effect such as redirection of light paths and variation of light intensity at specified wavelengths. It is also expected that the consequently alternated light pass lengths and intensities change the absorption properties of zinc phthalocyanine (ZnPc) thin films grown on top of the nano-patterned PEDOT:PSS layer. The influence of conductivity and thickness of the PEDOT:PSS layer on the absorption properties of ZnPc thin films were also investigated.

  • PDF

Narrowband Modulation Response Enhancement Using a Dual-Electrode Distributed Feedback Laser Integrated With an Electro-Absorption Modulator (전계 흡수 변조기가 집적된 다중 전극 분포 궤환형 레이저를 이용한 광신호의 협대역 변조 응답 향상)

  • Cho, Jun-Hyung;Heo, Seo-Weon;Sung, Hyuk-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1968-1973
    • /
    • 2013
  • We present the enhancement of narrowband modulation response of an optical source by integrating a dual-electrode distributed feedback (DFB) laser with an electro-absorption modulator (EAM). The dual-electrode DFB laser exhibits a multiple optical modes owing to a self-pulsation in GHz range. By modulating the laser and modulator sections of the integrated device simultaneously, 20-dB of narrowband modulation response enhancement at 6 GHz with 7-GHz tuning range has been observed.

Finite-Difference Time-Domain Calculation of Light Scattering Efficiency for Ag Nanorings (유한차분 시간영역 방법을 이용한 Ag 나노링 구조의 산란효과)

  • Lee, Tae-Soo;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.519-525
    • /
    • 2012
  • Enhancement of light trapping in solar cells is becoming increasingly urgent for the development of next generation thin film solar cells. One of the possible candidates for increasing light trapping in thin film solar cells that has emerged recently is the use of scattering from metallic nanostructures. In this study, we have investigated the effects of the geometric parameters of Ag nanorings on the light scattering efficiency by using three dimensional Finite Different Time Domain (FDTD) calculations. We have found that the forward scattering of incident radiation from Ag nanorings strongly depends on the geometric parameters of the nanostructures such as diameter, height, etc. The forward scattering to substrate direction is increased as the outer diameter and height of the nanorings decrease. In particular, for nanorings larger than 200 nm, the inner diameter of Ag nanorings should be optimized to enhance the forward scattering efficiency. Light absorption and scattering efficiency calculations for the various nanoring arrays revealed that the periodicity of nanorings arrays also plays an important role in the absorption and the scattering efficiency enhancement. Light scattering efficiency calculations for nanoring arrays also revealed that enhancement of scattering efficiency could be utilized to enhance the light absorption through the forward scattering mechanism.

Fabrication of Compound K-loaded Polymeric Micelle System and its Characterization in vitro and Oral Absorption Enhancement in vivo

  • Hong, Sun-Mi;Jeon, Sang-Ok;Seo, Jo-Eun;Chun, Kyeung-Hwa;Oh, Dong-Ho;Choi, Young Wook;Lee, Do Ik;Jeong, Seong Hoon;Kang, Jae Seon;Lee, Sangkil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3188-3194
    • /
    • 2014
  • Compound K (CK) was formulated as polymeric micelles (PM) using Pluronic$^{(R)}$ F-127 to enhance the oral absorption of CK, an intestinal bacterial metabolite of ginseng protopanaxadiol saponin. The physicochemical properties of Ck-loaded PM were characterized and an in vitro transport study using the Caco-2 cell system as well as an in vivo pharmacokinetic study using SD rats was carried out. The hydrodynamic mean particle size of CK-loaded PM (CK-PM) was $254{\pm}23.45nm$ after rehydration and the drug loading efficiency was ca. 99.9%. The FT-IR spectroscopy, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy data supported the presence of a new solid phase in the PM. The $P_{app}$ value of in vitro Caco-2 cell permeation of CK-PM and the oral absorption of CK was enhanced about 1.2-fold and 2.6-fold compared to CK suspension, respectively, showing that the present PM formulation enabled an enhancement of oral CK absorption.