• Title/Summary/Keyword: Absorber layer

Search Result 193, Processing Time 0.026 seconds

Study on Sound Reflection Control using an Active Sound Absorber (능동흡음재를 이용한 음파반사 제어기법 연구)

  • Chang, Woo-Suk;Gweon, Dae-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.806-814
    • /
    • 2009
  • This paper reviews a study about sound reflection control using an active sound absorber. An active sound absorber includes sound transmitting and receiving piezocomposite sensor layers molded by water tight epoxy, and connected with a feedback controller. The multi-layer sensors and the controller consists a closed feedback loop, whose intrinsic characteristics shows excellent impedance matching performance within specified frequency band, and consequently, minimizes reflection waves. Multilayer sound transmission model is derived based on one dimensional model, and its performance is verified with experiment using a pulse tube setup.

A Broad-Band Metamaterial Absorber Using Flexible Substrate (유연성 기판을 사용한 광대역 메타 흡수체)

  • Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.339-347
    • /
    • 2014
  • In this paper, the authors present a new design for a broad-band metamaterial(MTM) absorber that utilizes flexible substrate. The proposed MTM unit cell is constructed by a electric-inducive-capacitive(ELC) resonator and a cut-wire on the same side of the flexible polyimide substrate. To reduce the radar cross section at frequencies other than the targeted frequency bands, the metallic pattern layer of the proposed structure is placed facing toward the incident wave propagation direction. A prototype absorber was fabricated with a planar array of $33{\times}45$ unit cells. Our experiments showed that the proposed absorber exhibits a peak absorption rate of 92 % and 93 % at 9.06 GHz and 15.0 GHz, respectively, and 75 % of the full-width at half-maximum(FWHM) bandwidth is achieved. The proposed backplane-less MTM structure can be used for a broad-band microwave absorber and irregular surface applications.

A Study on Design and Microwave Characteristics of a RF/IR Multispectral Absorber (전자파/적외선 다중파장 흡수체의 설계와 초고주파 특성에 관한 연구)

  • Minah Yoon;Suwan Jeon;Youngeun Ra;Yerin Jo;Wonwoo Choi;Yukyoung Lee;Kwangseop Kim;Jonghak Lee;Kichul Kim;Taein Choi;Hakjoo Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2024
  • In this paper, a design for a radio frequency(RF) and infrared(IR) absorber with metasurfaces is discussed in microwave frequency bands. The RF absorber includes double layers of metasurfaces to operate in S- and X-bands. Effects of sheet resistance of the metasurfaces and thicknesses of dielectric supporting layers on reflection responses are investigated. An IR stealth layer incorporates an array of conductive grids with slits to reflect IR signals but to transmit RF signals and visible rays. Periodicity of the grids and slits is studied for transmission responses in the X-band and a surface area ratio. Reflection responses of the RF/IR multispectral absorber are found to be lower than -10 dB and -16 dB in the S- and X-bands, respectively, from full-wave simulation. Finally, the RF/IR multispectral absorber is fabricated and its reflection responses are measured to verify designed performance.

Characteristic Analysis and Preparation of Multi-layer TiNOx Thin Films for Solar-thermal Absorber (태양열 흡수판용 복층 TiNOx 박막의 제조와 특성 분석)

  • Oh, Dong-Hyun;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.820-824
    • /
    • 2014
  • TiNOx multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. 4 multi-layers of $TiO_2$/TiNOx(LMVF)/TiNOx(HMVF)/Ti/substrate have been prepared with ratio of Ar and ($N_2+O_2$) gas mixture. $TiO_2$ of top layer is anti-reflection layer on double TiNOx(LMVF)/TiNOx(HMVF) layers and Ti metal of infrared reflection layer. In this study, the crystallinity and surface properties of TiNOx thin films were estimated by X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM), respectively. The grain size of TiNOx thin films shows to increase with increasing sputtering power. The composition of thin films has been investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The TiNOx multi-layer films show the excellent optical performance beyond 9% of reflectance in those ranges wavelength.

Fabrication of CuInSe2 Absorber Layers for Thin Film Solar Cells by Doctor Blade Coating and Selenization using Solution Precursor (용액 전구체의 닥터블레이드 코팅 및 셀렌화 열처리를 통한 CuInSe2 박막 태양전지용 광흡수층 제조)

  • Kim, Chae-Woong;Ahn, Se-Jin;Yun, Jae-Ho;Lee, Jeong-Chul;Yoon, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.294-297
    • /
    • 2008
  • In this paper, a novel non-vacuum technique is described for the fabrication of a $CuInSe_2$ (CIS) absorber layer for thin film solar cells using a low-cost precursor solution. A solution containing Cu- and Inrelated chemicals was coated onto a Mo/glass substrate using the Doctor blade method and the precursor layer was then selenized in an evaporation chamber. The precursor layer was found to be composed of CuCl crystals and amorphous In compound, which were completely converted to chalcopyrite CIS phase by the selenization process. Morphological, crystallographic and compositional analyses were performed at each step of the fabrication process by SEM, XRD and EDS, respectively.

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • Lee, Eun-U;Park, Sun-Yong;Lee, Sang-Hwan;Kim, U-Nam;Jeong, U-Jin;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

Characterization of the Cu-layer deposition time on Cu2ZnSnS4 (CZTS) Thin Film Solar Cells Fabricated by Electro-deposition (Cu층 증착시간에 따른 Cu2ZnSnS4 (CZTS) 박막의 특성)

  • Kim, Yoon Jin;Kim, In Young;Gang, Myeng Gil;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • $Cu_2ZnSnS_4$ (CZTS) thin films were fabricated by successive electrodeposition of layers of precursor elements followed by sulfurization of an electrodeposited Cu-Zn-Sn precursor. In order to improve quality of the CZTS films, we tried to optimize the deposition condition of absorber layers. In particular, I have conducted optimization experiments by changing the Cu-layer deposition time. The CZTS absorber layers were synthesized by different Cu-layer conditions ranging from 10 to 16 minutes. The sulfurization of Cu/Sn/Zn stacked metallic precursor thin films has been conducted in a graphite box using rapid thermal annealing (RTA). The structural, morphological, compositional, and optical properties of CZTS thin films were investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray Flourescenece Spectrometry (XRF). Especially, the CZTS TFSCs exhibits the best power conversion efficiency of 4.62% with $V_{oc}$ of 570 mV, $J_{sc}$ of $18.15mA/cm^2$ and FF of 45%. As the time of deposition of the Cu-layer to increasing, the properties were confirmed to be systematically changed. And we have been discussed in detail below.

Design of Wideband Thin Absorber Using Resistive Cross-Shaped Surface Structures (저항성 십자 표면 구조를 이용한 광대역 박형 흡수체 설계)

  • Lee, Jun-Ho;Kim, Gunyoung;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.311-316
    • /
    • 2015
  • This paper presents a design method for thin but wideband absorbers using resistive sheets. Its equivalent circuit consists of a series RLC resonant circuit and a short-terminated transmission line. Based on this equivalent circuit, we presented the three conditions for an electromagnetic absorber which has a thickness less than a quarter wavelength and wide absorption bandwidth at center frequency. By using an root-finding algorithm, the equivalent resistance, capacitance, and inductance of the absorbers are obtained. These equivalent circuit values for the absorber surface can be realized by a 2D periodic cross-shaped structure which has required surface resistance. Using the design method, we have designed the absorber which has 18.75 mm($67.5^{\circ}$ electrical length) thickness and 90 % absorption bandwidth of 116 % bandwidth at 3 GHz.

Complex Mobile Antenna for Wireless Power Transfer & Near Field Communication (근거리 통신 및 무선 전력 전송을 위한 복합 모바일 안테나)

  • Lee, Seok-Moon;Ha, Cheun-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.149-155
    • /
    • 2014
  • In this paper, we study the complex mobile antenna for WPT(Wireless Power Transfer) with NFC(Near Field Communication) of inductive coupling using FPCB which has half thickness compared with the existing coil type antennas. Considering the pattern thickness of loop antenna, the analysis of electromagnetic wave absorber and battery's influence, absorber thickness, the ranges of design parameters are obtained. The proposed antenna has 0.45 mm thickness using single layer 3 oz FPCB and absorber. From measurement, the characteristics of NFC antenna can be satisfied with the specifications of EMVCo. and domestic mobile telecommunication and the transmission efficiency of the proposed WPT antenna is 68.1 % which is competitive with the existing coil type antenna. From the results of this paper, it has been confirmed that the proposed antenna can be used as the WPT and NFC antenna for mobile phone. Key words: Wireless Power Transfer, Near Field Communication, Mobile Phone Antenna, Absorber, FPCB.