DOI QR코드

DOI QR Code

Characteristic Analysis and Preparation of Multi-layer TiNOx Thin Films for Solar-thermal Absorber

태양열 흡수판용 복층 TiNOx 박막의 제조와 특성 분석

  • Oh, Dong-Hyun (Department of Display Engineering, Doowon Technical University) ;
  • Han, Sang-Uk (Department of Display Engineering, Doowon Technical University) ;
  • Kim, Hyun-Hoo (Department of Display Engineering, Doowon Technical University) ;
  • Jang, Gun-Eik (Department of Material Engineering, Chungbuk National University) ;
  • Lee, Yong-Jun (Research Development Team, Sunda Korea)
  • 오동현 (두원공과대학교 디스플레이공학과) ;
  • 한상욱 (두원공과대학교 디스플레이공학과) ;
  • 김현후 (두원공과대학교 디스플레이공학과) ;
  • 장건익 (충북대학교 재료공학과) ;
  • 이용준 (선다코리아 연구개발팀)
  • Received : 2014.10.30
  • Accepted : 2014.11.05
  • Published : 2014.12.01

Abstract

TiNOx multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. 4 multi-layers of $TiO_2$/TiNOx(LMVF)/TiNOx(HMVF)/Ti/substrate have been prepared with ratio of Ar and ($N_2+O_2$) gas mixture. $TiO_2$ of top layer is anti-reflection layer on double TiNOx(LMVF)/TiNOx(HMVF) layers and Ti metal of infrared reflection layer. In this study, the crystallinity and surface properties of TiNOx thin films were estimated by X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM), respectively. The grain size of TiNOx thin films shows to increase with increasing sputtering power. The composition of thin films has been investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The TiNOx multi-layer films show the excellent optical performance beyond 9% of reflectance in those ranges wavelength.

Keywords

References

  1. K. Lee, J. Kor. Sol. Ener. Soc., 31, 48 (2011).
  2. K. Lee, J. Kor. Sol. Ener. Soc., 33, 31 (2013). https://doi.org/10.7836/kses.2013.33.4.031
  3. Q. Zhang, Sol. Energy Mater. Sol. Cells., 62, 63 (2000). https://doi.org/10.1016/S0927-0248(99)00136-1
  4. Q. Zhang, M. Hadavi, K. Lee, and T. Shen, J. Phys. D. Appl. Phys., 36, 723 (2003). https://doi.org/10.1088/0022-3727/36/6/315
  5. E. Barrera-Calva, J. Mendez-Vivar, M. Ortega-Lopez, L. Huerta-Arcos, J. Morales-Corona, and R. Olayo-Gonzalez, Res. Lett. Mater. Sci., 2008, 1 (2008).
  6. T. Ohm, W. Yeo, and D. Kim, J. Kor. Sol. Ener. Soc., 33, 27 (2013). https://doi.org/10.7836/kses.2013.33.3.027
  7. H. Lee, J. Kim, S. Lee, Y. Kang, S. Lee, and M. Moon, J. Kor. Sol. Ener. Soc., 30, 107 (2010).
  8. K. Lee, J. Kor. Sol. Ener. Soc., 30, 90 (2010).
  9. M. Julkarnain, J. Hossain, K. Sharif, and K. Khan, J. Optoelect. Adv. Mater., 13, 485 (2011).
  10. J. Fan and P. Zavracky, Appl. Phys. Lett., 29, 478 (1977).
  11. H. Graighead and R. Bugmann, J. Vac. Sci. Technol., 15, 269 (1978). https://doi.org/10.1116/1.569568
  12. W. Pekruhn, L. Thomas, I. Eroser, A. Schroder, and U. Wenning, Sol. Energy Mater., 13, 199 (1986).
  13. L. Thomas and C. Tang, Sol. Energy Mater., 19, 11 (1989).
  14. T. Sathiaraj, R. Thangaraj, and O. Agnihotri, Sol. Energy Mater., 19, 343 (1989).
  15. K. Lee, J. Kor. Sol. Ener. Soc., 28, 33 (2008).
  16. K. Lee, J. Kor. Sol. Ener. Soc., 26, 57 (2006).
  17. J. Thornton, J. Vac. Sci. Technol., 12, 830 (1975). https://doi.org/10.1116/1.568682