• Title/Summary/Keyword: Absorbed Doses

Search Result 206, Processing Time 0.022 seconds

A study on Classification of Temporarily Access Group about Sanitation Workers in Nuclear Medicine Department (핵의학과 환경미화원의 일시 출입자 분류에 대한 고찰)

  • Yoo, Jae-Sook;Jang, Jeong-Chan;Kim, Ho-Seong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • Purpose: Those who access to the nuclear medicine department are classified as radiation workers, temporarily access group, and occasional access group as defined by the atomic energy law. The radiation workers and temporarily access people wear a personal radiation dosimeter for checking their own radiation absorbed dose periodically. However, because of the sanitation workers, classified as temporarily access group, who are working in the nuclear medicine department are moved in a cycle with other departments and their works are changeful, it is hard to control their radiation absorbed dose. Thus, this study is going to examine the state of the sanitation worker's radiation absorbed dose, and then make sure whether they are classified as temporarily access group or not. Materials and methods: In the first instance, the first sanitation worker who works in vitro laboratory and PET room and the second sanitation worker who works in gamma camera rooms (invivo room) wore radiation dosimeter-OSL(Optically Stimulated Luminescence)- to measure their own radiation absorbed dose during work time from May to June 2011. Secondly, this study was taken place 5 places in gamma camera rooms, 2 places in PET bed room, operating room, waiting room and cyclotron room in PET and 4 places in vitro laboratory. And then to measure the radiation space dose rate, it is measured 10 times each of places as sanitation worker's work flow by using radiation survey meter. Results: The radiation absorbed dose on OSL of the first c who works in vitro laboratory and PET room and the second one who works in gamma camera rooms are 0.04, 0.02 mSv per month respectively. That means the estimated annual radiation absorbed doses are less than 1mSv as 0.48, 0.24 mSv/yr respectively. The radiation space dose rates as sanitation worker's work flow using survey meter are 0.0037, 0.0019 mSv/day, so the estimated annual radiation absorbed dose are 0.93, 0.47 mSv/yr respectively. The weighted exposure dose of first sanitation worker of each places are 1.62% in cyclotron room, 3.88% in waiting room, 2.39% in operating room, 81.01% in bed room of PET and 11.01% in vitro laboratory. The weighted exposure dose of second sanitation worker of each places are 45.22% in radiopharmaceutical laboratory, gamma 30.64% in camera rooms, 15.65% in waiting room, 8.49% in reading room. Conclusion: The annual radiation absorbed doses on OSL of both sanitation workers are less than 1 mSv per year and the annual radiation absorbed doses by using survey meter are less than 1mSv either, but close up to 1 mSv. Thus, to clarify whether the sanitation workers are temporarily access group or not, and to be lessen their s radiation absorbed dose, they should be educated about management of radiation and modified their work flow or work time appropriately, their radiation absorbed dose would be lessen certainly.

  • PDF

Absorbed Dose from Large Balloon Filled with Liquid Ho-166

  • Joh, Chul-Woo;Park, Chan H.;Lee, Myoung-Hoon;Yoon, Seok-Nam;Kim, Mi-Hwa;Jang, Ji-Sun;Park, Kyung-Bae
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.328-330
    • /
    • 2002
  • Large balloon angio catheter is used for Percutaneous Transluminal Angioplsty(TPA) of the iliac, femoral and renal arteries as well as after Transjugular Intrahepatic portosystemic shunt(TIPS). The use of angioplasty balloon filled with liquid form of radioisotope reduces the rate of restenosis after PTA. The purpose of this study was to evaluate the absorbed dose to the target vessels from various sized large balloon filled with liquid form of Ho-166-DTPA. Four balloons of balloon dilatation catheters evaluated were 5, 6, 8 and 10 mm in diameter. GafChromic film was used for the estimation of the absorbed dose near the surface of the balloon catheters. Absorbed dose rates are plotted in units of Gy/min/GBq/ml as a function of radial distance in mm from the surface of balloon. The absorbed dose rate was 1.1, 1.6, 2.2 and 2.3 Gy/min/GBq/ml at a balloon surface, 0.3, 0.4, 0.5 and 0.6 Gy/min/GBq/ml at 1 mm depth for various balloon diameter 5, 6, 8 and 10 mm in diameter respectively. The study was conducted to estimate the absorbed doses to the vessels from various sized large balloons filled with liquid form of Ho-166-DTPA for clinical trial of radiation therapy after the PTA. The absorbed dose distribution of Ho-166 appeared to be nearly ideal for vascular irradiation since beta range is very short avoiding unnecessary radiation to surrounding normal tissues.

  • PDF

Non-linear Responses of Hordeum vulgare Germs to Low Doses of Ionizing Radiation

  • Kim, Jin-Kyu;Alla A. Oudalova;Vladimir G. Dikarev
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2003
  • The induction of chromosome aberrations in Hordeum vulgare germs after irradiation is studied for the dose range of 10 to 1,000 mGy. The relationship between the frequency of aberrant cells and the absorbed dose is shown to be non -linear and has a dose-independent plateau within the range of 56-467 mGy where the level of cytogenetic damage is statistically significantly distinguished from the spontaneous level. The comparison of the goodness of the experimental data fitting with mathematical models of different complexities, using the most common quantitative criteria, demonstrates the benefit of the piecewise linear model over the linear and polynomial ones in approximating the cytogenetical disturbance frequency. The results of our study support the conclusion about indirect mechanism of chromosome aberrations induced by low doses or dose rates mutagenesis.

Evaluation of the Usefulness of Digital Tomosynthesis in the Chest (흉부영역에서 디지털 토모신테시스의 유용성 평가)

  • Jang, Dong-Hyuk;Shim, Sung-Shine;Choi, Jae-Wook;Choi, Jun-Gu
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.340-348
    • /
    • 2012
  • To evaluate the usefulness of tomosynthesis in the chest area, simple radiograph, low-dose CT, and tomosynthesis examinations were performed, and their absorbed doses were compared, and finally the images were evaluated. The absorbed dose recorded with the simple Radiograph examination was $0.33{\pm}0.27$ mGy, that of low-dose CT $1.26{\pm}0.56$ mGy, and that of tomosynthesis $0.55{\pm}0.02$ mGy, which indicate significance differences in absorbed doses among the examinations(p<0.001). Based on the evaluations of the images, The simple radiograph scores were $1.66{\pm}0.72$, $1.61{\pm}0.63$, and $1.57{\pm}0.73$, respectively; low-dose CT scores were $2.92{\pm}0.26$, $2.91{\pm}0.29$, and $2.88{\pm}0.32$, respectively; and tomosynthesis scores were $2.69{\pm}0.51$, $2.76{\pm}0.43$, and $2.66{\pm}0.61$, respectively. That is, there were statistically significant differences among the examinations(p<0.001), although there was no significant difference between low-dose CT and tomosynthesis examinations. Therefore, tomosynthesis is judged to be a useful examination that can minimize radiation doses to patients during chest examinations and enhance diagnostic efficacy.

A Study on the Usefulness of Glass Dosimeter in the Evaluation of Absorbed Dose by Comparing the Doses of Multi-purpose Dosimeter and Glass Dosimeter Using Kerma with PCXMC 2.0 in DR(Digital Radiography) (DR(Digital Radiography)에서 PCXMC 2.0을 이용한 Kerma와 다목적 선량계, 유리선량계의 선량비교를 통한 흡수선량 평가 시 유리선량계의 유용성에 관한 연구)

  • Hwang, Jun-Ho;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.292-299
    • /
    • 2017
  • Radiation protection aims to prevent a deterministic effect and minimize a stochastic effect. Overestimating a deterministic effect and a stochastic effect can result in an inaccurate assessment of the risks that will occur in the future, and thus accurate evaluation of the absorbed dose of these fundamental amounts is especially important. This study was intended to measure Kerma using PCXMC 2.0 based on Monte Carlo simulations and to assess the exact absorbed dose by comparing doses produced using multipurpose dosimeter and glass dosimeter. It has been decided to conduct experiments for skull, abdomen and pelvis, and Kerma measured PCXMC 2.0 based on Monte Carlo simulations. The absorbed dose was measured using muli purpose dosimeter and glass dosimeter. The results for the experiments conducted in skull, abdomen, pelvis show that the difference in dose appears great in the order of PCXMC 2.0, muli purpose dosimeter, and the glass dosimeter, and muli purpose dosimeter showed a value closer to that of Kerma. As a result, it has been found that the glass dosimeter was the most advantageous in measuring the actual absorbed dose.

Comparison of Air Kerma and Absorbed Dose to Water Based Protocols for High Energy Photon Beams: Theoretical and Experimental Study

  • Shin, Dong-Oh;Kim, Seong-Hoon;Seo, Won-Seop;Park, Sung-Yong;Park, Jin-Ho;Kang, Jin-Oh;Hong, Seong-Eon;Ahn, Hee-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.241-243
    • /
    • 2002
  • New types of protocols have been recently in development, all based on an absorbed dose-to-water with the aim of improving the accuracy of measurements of absorbed dose to water. IAEA TRS-277, the air-kerma standard-based present protocol, and IAEA TRS-398 and AAPM TG-51, the absorbed dose-to-water standard-based new one, were studied and compared theoretically and experimentally for photon beams of 6, 10, and 15 MV. NE 2571 and 3 Farmer types of ionization chambers in widely commercial use were used to determine an absorbed dose to water at the reference depth in water. Two different kinds of calibration factors were given respectively for every chamber calibrated in $\^$60/CO gamma ray beams from a Korean Secondary Standard Dosimetry Laboratory (KFDA). This work shows that there is around 1 % of difference of absorbed doses measured between two different types of calibration systems owing to different physical parameters and reference conditions used. We hope this work to help form the basis on development of new type of protocol in Korea.

  • PDF

Radiation Dose Calculation in the Surrounding Organs during Brachytherapy of Prostate Cancer (전립선암 근접시료시 주변 장기 선량 평가)

  • Kim, Jung-Hoon;Lim, Chang-Seon;Whang, Joo-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.172-177
    • /
    • 2008
  • As a part of estimating quantitative radiation treatment doses, we produced a mathematical phantom based on the standard Korean male. Then, with the prostate as the source organ, we calculated the absorbed dose in the prostate and surrounding organs forecasted to occur during brachytherapy for prostate cancer. To simulate the procedure, we selected $^{25}I$ and $^{103}Pd$ useful in brachytherapy of the prostate as the radionucleids and made an assumption that 1 Ci of initial radioactivity is administered. As a result, we found that the prostate, as the source organ, indicated 101 Gy/Ci and 7.24 Gy/Ci, respectively, in case of $^{125}I$ and $^{103}Pd$. With the exception of the prostate, organs with high absorbed doses were found to be in the order of the penis and scrotum, sigmoid colon, testicles and the urinary bladder, which are relatively close to the prostate.

  • PDF

Organ dose conversion coefficients in CT scans for Korean adult males and females

  • Lee, Choonsik;Won, Tristan;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.681-688
    • /
    • 2022
  • Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.

Chamber-to-chamber Variations in the Same Type of a Cylindrical Chamber for the Measurements of Absorbed Doses (흡수선량 측정 시 동종 원통형 이온함에서 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.120-125
    • /
    • 2010
  • For the measurements of an absorbed dose using the standard dosimetry based on an absorbed dose to water the variety of factors, whether big, small, or tiny, may influence the accuracy of dosimetry. The beam quality correction factor ${\kappa}_{Q,Q_0}$ of an ionization chamber might also be one of them. The cylindrical type of ionization chamber, the PTW30013 chamber, was chosen for this work and 9 chambers of the same type were collected from several institutes where the chamber types are used for the reference dosimetry. They were calibrated from the domestic Secondary Standard Dosimetry Laboratory with the same electrometer and cable. These calibrated chambers were used to measure absorbed doses to water in the reference condition for the photon beam of 6 MV and 10 MV and the electron beam of 12 MeV from Siemens ONCOR. The biggest difference among chambers amounts to 2.4% for the 6 MV photon beam, 0.8% for the 10 MV photon beam, and 2.4% for the 12 MeV electron beam. The big deviation in the photon of 6 MV demonstrates that if there had been no problems with the process of measurements application of the same ${\kappa}_{Q,Q_0}$ to the chambers used in this study might have influenced the deviation in the photon 6 MV and that how important an external audit is.