• Title/Summary/Keyword: Abscisic acid (ABA)

Search Result 153, Processing Time 0.02 seconds

Effects of Gibberellic Acid and Abscisic Acid on Proteolysis of Senescing Leaves from Rice Seedlings (노화 수도유묘엽의 단백질분해에 미치는 GA$_3$과 ABA의 영향)

  • Kang, S. M;Kang, N. J;Cho, J. L;Kim, Z. H;Kwon, Y. W
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.350-359
    • /
    • 1993
  • The effect of gibberellic acid ($GA_3) and abscisic acid (ABA) on KCl-enhanced proteolysis of senescing leaves of rice(Oryza sativa L. cv. Chilsung) was studied. Emphasis was given to their effects on KCI-enhanced efflux of amino acids and proteinase activity. When treated singly, $GA_3 affected leaf proteolysis little, while ABA increased proteolysis, the rate of amino acid efflux, and ribulose -1,5 -bisphosphate carboxylase / oxygenase (Rubisco)-degrading endoproteinase activity. An additive increase in all three parameters mentioned above was observed when leaves were treated with ABA and KCl. No such an additive effect was found when $GA_3 was treated with KCl. Both $GA_3 and ABA helped to alleviate the KCI-suppressed activity of Rubisco-degrading exoproteinases. The additive increase in proteolysis of rice leaves in the presence of both ABA and KCl could thus be ascribed to a further increase in the efflux of protein hydrolyzates and Rubisco-degrading endoproteinase activity. An increase in proteolysis was accompanied by a decrease in water absorption, and the combined treatment of ABA with KCl resulted in a further reduction of water absorption.

  • PDF

Bioassays of Plant Hormones and Plant Growth Regulating Substances II. Abscisic Acid and Brassinolide (식물홀몬 및 생장조절물질의 생물검정기술 II. Abscisic Acid 및 Brassinolide)

  • 최충돈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s01
    • /
    • pp.16-25
    • /
    • 1989
  • A bioassay is a test system using a living organism (in whole or in part) to determine the presence or relative potency of chemical substances. The development and uses of bioassay are intimately linked to the discovery and characterization of the major classes of plant hormones. An application of this relationship is helpful for understanding the concept of plant hormones as well as the use of bioassay. And plant bioassay have been development and employed not only for the discovery and characterization of the biological activity of plant growth regulators but also have served several important secondary roles. The ideal bioassay should possess the characteristic of high specificity. great sensitivity. short response time, low cost and ease of obtaining plant material. acceptable ease of manipulation, and minimal space and equipment requirements.

  • PDF

Investigation of the Dormant Characteristics for Early Production of Young Leaf in Butterbur(Petasites japonicas MAX.) (머위 유엽 조기생산을 위한 휴면특성 조사)

  • 유성오;배종향
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.143-150
    • /
    • 1997
  • In order to produce young leaf of butterbur(Petasites japoflicus MAX.) in early spring, the planting date and relationship between abscisic acid(ABA) content and dormancy were investigated. Under open field condition, the dormancy of rootstock was initiated in the beginning of October, was the deepest in the middle of November and was completely broken in the end of December. When those periods were converted by the low accumulation hour below 5$^{\circ}C$, 900 hours were required approximately. This means that the rootstock needs for dormant breaking necessitates under the low temperature. In relationship between growing period and ABA content, the ABA in root-stock did not exist during maximum growing period, from April to September. This means that the ABA together with other substances in rootstock can be transferred to the shoot part with sprouting. While shoot part withered by decreacing the open field temperature since October, the ABA intiated to exist in rootstock. This means that the ABA in the shoot part can be transferred to the rootstock part. Therefore, it was concluded that the ABA which has been known that inhibiting growth and inducing dormancy was closely related with dormancy of rootstock.

  • PDF

ABA Signal Transduction Pathway in Plants: ABA Transport, Perception, Signaling and Post-Translational Modification (식물의 앱시스산 신호 전달 기작: 앱시스산 수송, 인식, 신호 전달 및 번역 후 변형 과정에 관하여)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.196-208
    • /
    • 2014
  • During the life cycle of plants, water deficit leads to an adverse effect on its growth and development. To increase the productivity of crops, overcoming such drought stress is one of the most important issues in the field of plant study. Among plant hormones, the phytohormone, abscisic acid (ABA) plays a crucial role in eliciting resistance to drought stress as well as in multiple developmental processes, such as seed germination, stomatal closure, and seedling growth. Therefore, further understanding of the ABA-mediated signal transduction pathway in plants is an effective strategy to generate drought-tolerant plants. Posttranslational modification, such as phosphorylation and ubiquitination, is an efficient mechanism for plants to acquire quick adaptation against environmental stress conditions since this process directly affects pre-existing signaling components by modulating protein activity and stability. Here, recent reports on ABA signaling are reviewed, especially focusing on ABA transport, perception, signaling, and posttranslational modification in ABA-mediated cellular responses. Also, we present future prospects on how the control of such a mechanism can be applied to generate useful agricultural crops.

Influence of Thermal Treatments on Germination and Internal Compositions of 'Hongro' and 'Fuji' Apple Trees during Endodormancy (내재휴면기 온도처리가 사과 '홍로' 와 '후지'의 발아와 내부물질 변화에 미치는 영향)

  • Cho, Jung Gun;Ryu, Suhyun;Lee, Seul-Ki;Han, Jeom Hwa;Jeong, Jae Hoon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.352-357
    • /
    • 2019
  • In this study, we investigated the limit temperature range which is effective for dormancy release of 'Hongro' and 'Fuji' apples during the endodormancy period. The germination rate was 50% or more in all treatments except of 'Hongro' $-5^{\circ}C$ treatment. The germination rate of 'Fuji' was 86.3% at the temperature of $-5^{\circ}C$. The concentrations of carbohydrate and mineral components were significantly different between treatments but did not show any tendency or specific change. However, the sorbitol contents of 'Hongro' $-5^{\circ}C$ treatment were higher at 29.62 mg/g than those of 'Fuji', which was not affected for dormancy release. The results of hormone analysis showed that ABA(abscisic acid) and JA(jasmonic acid) in 'Hongro' $-5^{\circ}C$ treatment were respectively 176.48 and 15.72 ng/g. ABA, JA and SA(salicylic acid) contents in 'Fuji' apple tree were significantly lower than those of 'Hongro'. As a result of this study, the limit temperature range effective for dormancy release was different according to the varieties, and 'Hongro' did not affect with 30.3% of germination rate at $-5^{\circ}C$. However, 'Fuji' is 86.3% even at $-5^{\circ}C$ it was suggested that 'Fuji' had a chilling accumulation for dormancy release.

Analysis of the Change of Polyamine during the ABA Treatment in Radish Young Cotyledons and Hypocotyls (무의 자엽과 하배축에서 ABA 처리동안 Polyamine 농도 변화의 분석)

  • Cho, Bong-Heuy;Park, Sun Young
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.458-463
    • /
    • 2001
  • The concentration of free PAs in the cells was decreased gradually from $500{\mu}mole$ to $290{\mu}mole$ for PUT, from $153{\mu}mole$ to $79{\mu}mole$ for SPD, from $69{\mu}mole$ to $20{\mu}mole$ for SPM during the ABA treatment within 1 hour, and was slightly changed with the increasing or decreasing between $290{\mu}mole{\sim}220{\mu}mole$ in the constant content level of PUT during the continuously ABA treatment of 2 days in the young cotyledons. The concentration of free PUT was gradually decreased from $160{\mu}mole$ to $9{\mu}mole$ during the ABA treatment within 1 hour like as cotyledons, and decreased from $9{\mu}mole$ to $5{\mu}mole$ during the continuously ABA treatment 2 days in the young hypocotyls. PUT and other PA were existed $5{\mu}mole$ during the continuously ABA treatment of 2 days in the hypocotyls. It showed that during the ABA treatment was decreased all PA concentration in the cells and PAs were not concerned directly to stress, but might regulated physiological change against stress.

  • PDF

Influence of Short-term Application of Abscisic Acid in Nutrient Solution on Growth and Drought Tolerance of Tomato Seedlings (토마토 육묘과정에서 단기간 ABA처리가 묘소질과 건조내성에 미치는 영향)

  • Kim, Il-Seop;Vu, Ngoc-Thang;Vo, Hoang-Tung;Choi, Ki-Young;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • This study was conducted to evaluate influence of short-term application of abscisic acid (ABA) in nutrient solution on growth and drought tolerance of tomato seedlings. The treatments included four ABA concentrations (0.5, 1, 2, $3mg{\cdot}L^{-1}$) and control (non-treatment) were applied to the nutrient solution in a hydroponic system. On the $5^{th}$ and $10^{th}$ day after growing in the nutrient solution containing ABA, seedlings were transferred to -5 bars of PEG-8000 in a growth chamber to induce water stress. Except for stem diameter and fresh and dry weight of root, there were no statistical differences in other growth parameters among control, 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments. Seedlings growths were strongly inhibited in nutrient solution containing 2 and $3mg{\cdot}L^{-1}$ of ABA. The root growth such as fresh and dry weigh of root, total root surface area, and average root diameter was slightly enhanced in $1mg{\cdot}L^{-1}$ of ABA treatment. The elevation of ABA concentrations in nutrient solution resulted in the decrease in transpiration rate and increase in stomatal diffusive resistance and leaf temperature of tomato seedlings. The initiations of seedling wilting after treating in -5 bars of PEG were delayed from 10 hrs in control to 30 hrs in ABA applied treatments. Additionally, the high percentages of recovered seedlings were observed in 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments after re-irrigation. Therefore, short-term application of $1mg{\cdot}L^{-1}$ of ABA in the nutrient solution stimulated the root growth and drought tolerance of tomato seedlings by delaying the start time of wilting point and enhancing the recovery after re-irrigation.

Differential expression of a poplar SK2-type dehydrin gene in response to various stresses

  • Bae, Eun-Kyung;Lee, Hyo-Shin;Lee, Jae-Soon;Noh, Eun-Woon
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.439-443
    • /
    • 2009
  • Dehydrins are group II, late embryogenesis abundant proteins that act putatively as chaperones in stressed plants. To elucidate the function of dehydrins in poplar, we isolated the $SK_2$-type dehydrin gene Podhn from Populus alba $\times$ P. tremula var. glandulosa suspension cells and analyzed its expression following treatments of abiotic stress, wounding and plant growth regulator. Sequence homology and phylogenetic analyses indicate Podhn encodes an acidic dehydrin (pI 5.14, 277 amino acids, predicted size 25.6 kDa) containing two lysine-rich "K-segments" and a 7-serine residue "S-segment", both characteristic of $SK_2$-type dehydrins. Southern blots show Podhn genes form a small gene family in poplar. Podhn was expressed in all tissues examined under unstressed conditions, but most strongly in cell suspensions (especially in the stationary phase). Drought, salt, cold and exogenous abscisic acid (ABA) treatments enhanced Podhn expression, while wounding and jasmonic acid caused its reduction. Therefore, Podhn might be involved in ABA or stress response.

Functional Analysis of Pepper Cys2/His-Type Zinc-Finger Protein Promoter Region in Response to Bacterial Infection and Abiotic Stresses in Tobacco Using Agrobacterium-Mediated Transient Assay

  • Kim, Sang-Hee;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • The promoter region flanking the 5’ CAZFP1 coding region was isolated from the genomic DNA of Capsicum annuum. To identify the upstream region of the CAZFP1 gene required for promoter activity, a series of CAZFP1 promoter deletion derivatives was created. Each deletion construct was analyzed by Agrobacterium-mediated transient transformation in tobacco leaves after infection by Pseudomonas syringae pv. tabaci, or treatment with methyl jasmonate (MeJA), ethylene, abscisic acid (ABA), salicylic acid (SA), cold and wounding. Promoter fragments of 685 bp or longer showed 7-fold or greater induction after P. s. pv. tabaci infection and MeJA treatment. The CAZFP1 full-length promoter (-999 bp) also showed 6-fold induction in response to ethylene. The transiently transformed tobacco leaves with the CAZFP1 full length promoter fused-GUS gene showed more than 5-fold induction in response to SA, ABA and cold. These results suggest that the CAZFP1 promoter contains responsive elements for pathogen, MeJA, ethylene, SA, ABA and cold.